Mesoscale Eddy–Internal Wave Coupling. Part I: Symmetry, Wave Capture, and Results from the Mid-Ocean Dynamics Experiment

Kurt L. Polzin Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Kurt L. Polzin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Vertical profiles of horizontal velocity obtained during the Mid-Ocean Dynamics Experiment (MODE) provided the first published estimates of the high vertical wavenumber structure of horizontal velocity. The data were interpreted as being representative of the background internal wave field, and thus, despite some evidence of excess downward energy propagation associated with coherent near-inertial features that was interpreted in terms of atmospheric generation, these data provided the basis for a revision to the Garrett and Munk spectral model.

These data are reinterpreted through the lens of 30 years of research. Rather than representing the background wave field, atmospheric generation, or even near-inertial wave trapping, the coherent high wavenumber features are characteristic of internal wave capture in a mesoscale strain field. Wave capture represents a generalization of critical layer events for flows lacking the spatial symmetry inherent in a parallel shear flow or isolated vortex.

Corresponding author address: Kurt L. Polzin, WHOI, MS#21, Woods Hole, MA 02543. Email: kpolzin@whoi.edu

Abstract

Vertical profiles of horizontal velocity obtained during the Mid-Ocean Dynamics Experiment (MODE) provided the first published estimates of the high vertical wavenumber structure of horizontal velocity. The data were interpreted as being representative of the background internal wave field, and thus, despite some evidence of excess downward energy propagation associated with coherent near-inertial features that was interpreted in terms of atmospheric generation, these data provided the basis for a revision to the Garrett and Munk spectral model.

These data are reinterpreted through the lens of 30 years of research. Rather than representing the background wave field, atmospheric generation, or even near-inertial wave trapping, the coherent high wavenumber features are characteristic of internal wave capture in a mesoscale strain field. Wave capture represents a generalization of critical layer events for flows lacking the spatial symmetry inherent in a parallel shear flow or isolated vortex.

Corresponding author address: Kurt L. Polzin, WHOI, MS#21, Woods Hole, MA 02543. Email: kpolzin@whoi.edu

Save
  • Bendat, J. S., and A. G. Piersol, 1986: Random data. . Analysis and Measurement Procedures, 2nd ed. John Wiley & Sons.

  • Bretherton, F. P., 1966: The propagation of groups of internal gravity waves in a shear flow. Quart. J. Roy. Meteor. Soc., 92 , 466480.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1969: On the mean motion induced by internal gravity waves. J. Fluid Mech., 36 , 785803.

  • Brown, E. D., and W. B. Owens, 1981: Observations of the horizontal interactions between the internal wave field and the mesoscale flow. J. Phys. Oceanogr., 11 , 14741480.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., 1982: Sources of eddy energy in the Gulf Stream Recirculation Region. J. Mar. Res., 40 , 10471068.

  • Bühler, O., and M. E. McIntyre, 2005: Wave capture and wave-vortex duality. J. Fluid Mech., 534 , 6795.

  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81 , 19431950.

  • D’Asaro, E. A., 1995: Upper-ocean inertial currents forced by a strong storm. Part III: Interaction of inertial currents and mesoscale eddies. J. Phys. Oceanogr., 25 , 29532958.

    • Search Google Scholar
    • Export Citation
  • Ford, R., M. E. McIntyre, and W. A. Norton, 2000: Balance and the slow quasimanifold: Some explicit results. J. Atmos. Sci., 57 , 12361254.

    • Search Google Scholar
    • Export Citation
  • Freeland, H. J., and W. J. Gould, 1976: Objective analysis of mesoscale ocean circulation features. Deep-Sea Res., 23 , 915923.

  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80 , 291297.

  • Jones, W. L., 1967: Propagation of internal gravity waves in fluids with shear flow and rotation. J. Fluid Mech., 30 , 439448.

  • Jones, W. L., 1969: Ray tracing for internal gravity waves. J. Geophys. Res., 74 , 20282033.

  • Joyce, T. M., and M. C. Stalcup, 1984: An upper ocean current jet and internal waves in a Gulf Stream Warm Core Ring. J. Geophys. Res., 89 , 19972003.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15 , 544565.

  • Kunze, E., and T. B. Sanford, 1984: Observations of near-inertial waves in a front. J. Phys. Oceanogr., 14 , 566581.

  • Kunze, E., and J. M. Toole, 1997: Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J. Phys. Oceanogr., 27 , 26632693.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., and E. Boss, 1998: A model for vortex-trapped internal waves. J. Phys. Oceanogr., 28 , 21042115.

  • Kunze, E., R. W. Schmitt, and J. M. Toole, 1995: The energy balance in a warm-core ring’s near-inertial critical layer. J. Phys. Oceanogr., 25 , 942957.

    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., 1976: Observations on the vertical polarization and energy flux of near-inertial waves. J. Phys. Oceanogr., 6 , 894908.

    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res., 80 , 19751978.

    • Search Google Scholar
    • Export Citation
  • Lee, V., and C. Wunsch, 1977: Atlas of the Mid-Ocean Dynamics Experiment (MODE-I). MIT, 274 pp.

  • McWilliams, J. C., 1976: Maps from the Mid-Ocean Dynamics Experiment. Part I: Geostrophic streamfunction. J. Phys. Oceanogr., 6 , 810827.

    • Search Google Scholar
    • Export Citation
  • Mied, R. P., G. J. Lindemann, and C. L. Trump, 1987: Inertial wave dynamics in the North Atlantic Subtropical Zone. J. Geophys. Res., 92 , 1306313074.

    • Search Google Scholar
    • Export Citation
  • Mied, R. P., C. Y. Shen, and M. J. Kidd, 1990: Current shear-inertial wave interaction in the Sargasso Sea. J. Phys. Oceanogr., 20 , 8196.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35 , 15051517.

    • Search Google Scholar
    • Export Citation
  • Müller, P., 1976: On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech., 77 , 789823.

  • Ooyama, K., 1966: On the stability of the baroclinic circular vortex: A sufficient criterion for instability. J. Atmos. Sci., 23 , 4353.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2004: A heuristic description of internal wave dynamics. J. Phys. Oceanogr., 34 , 214230.

  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25 , 306328.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., N. S. Oakey, J. M. Toole, and R. W. Schmitt, 1996: Finestructure and microstructure characteristics across the northwest Atlantic Subtropical Front. J. Geophys. Res., 101 , 1411114121.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., E. Kunze, J. M. Toole, and R. W. Schmitt, 2003: The partition of fine-scale energy into internal waves and subinertial motions. J. Phys. Oceanogr., 33 , 234248.

    • Search Google Scholar
    • Export Citation
  • Provenzale, A., 1999: Transport by coherent barotropic vortices. Ann. Rev. Fluid Mech., 31 , 5593.

  • Sanford, T. B., 1975: Observations of the vertical structure of internal waves. J. Geophys. Res., 80 , 38613871.

  • Shephard, T. G., 1990: Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Advances in Geophysics, Vol. 32, Academic Press, 287–338.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., 1982: The relation of near-inertial motions observed in the mixed layer during the JASIN (1978) experiment to the local wind stress and to the quasi-geostrophic flow field. J. Phys. Oceanogr., 12 , 11221136.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 900 306 98
PDF Downloads 528 129 6