The Effect of the Galápagos Islands on ENSO in Forced Ocean and Hybrid Coupled Models

Kristopher B. Karnauskas Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland

Search for other papers by Kristopher B. Karnauskas in
Current site
Google Scholar
PubMed
Close
,
Raghu Murtugudde Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland

Search for other papers by Raghu Murtugudde in
Current site
Google Scholar
PubMed
Close
, and
Antonio J. Busalacchi Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland

Search for other papers by Antonio J. Busalacchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An ocean general circulation model (OGCM) of the tropical Pacific Ocean is used to examine the effects of the Galápagos Islands on the El Niño–Southern Oscillation (ENSO). First, a series of experiments is conducted using the OGCM in a forced context, whereby an idealized El Niño event may be examined in cases with and without the Galápagos Islands. In this setup, the sensitivity of the sea surface temperature (SST) anomaly response to the presence of the Galápagos Islands is examined. Second, with the OGCM coupled to the atmosphere via zonal wind stress, experiments are conducted with and without the Galápagos Islands to determine how the Galápagos Islands influence the time scale of ENSO.

In the forced setup, the Galápagos Islands lead to a damped SST anomaly given an identical zonal wind stress perturbation. Mixed layer heat budget calculations implicate the entrainment mixing term, which confirms that the difference is due to the Galápagos Islands changing the background mean state, that is, the equatorial thermocline as diagnosed in a previous paper. In the hybrid coupled experiments, there is a clear shift in the power spectrum of SST anomalies in the eastern equatorial Pacific. Specifically, the Galápagos Islands lead to a shift in the ENSO time scale from a biennial to a quasi-quadrennial period. Mechanisms for the shift in ENSO time scale due to the Galápagos Islands are discussed in the context of well-known paradigms for the oscillatory nature of ENSO.

Corresponding author address: Dr. Kristopher B. Karnauskas, Lamont–Doherty Earth Observatory, Columbia University, 301E Oceanography Bldg., 61 Route 9W, Palisades, NY 10964. Email: krisk@ldeo.columbia.edu

Abstract

An ocean general circulation model (OGCM) of the tropical Pacific Ocean is used to examine the effects of the Galápagos Islands on the El Niño–Southern Oscillation (ENSO). First, a series of experiments is conducted using the OGCM in a forced context, whereby an idealized El Niño event may be examined in cases with and without the Galápagos Islands. In this setup, the sensitivity of the sea surface temperature (SST) anomaly response to the presence of the Galápagos Islands is examined. Second, with the OGCM coupled to the atmosphere via zonal wind stress, experiments are conducted with and without the Galápagos Islands to determine how the Galápagos Islands influence the time scale of ENSO.

In the forced setup, the Galápagos Islands lead to a damped SST anomaly given an identical zonal wind stress perturbation. Mixed layer heat budget calculations implicate the entrainment mixing term, which confirms that the difference is due to the Galápagos Islands changing the background mean state, that is, the equatorial thermocline as diagnosed in a previous paper. In the hybrid coupled experiments, there is a clear shift in the power spectrum of SST anomalies in the eastern equatorial Pacific. Specifically, the Galápagos Islands lead to a shift in the ENSO time scale from a biennial to a quasi-quadrennial period. Mechanisms for the shift in ENSO time scale due to the Galápagos Islands are discussed in the context of well-known paradigms for the oscillatory nature of ENSO.

Corresponding author address: Dr. Kristopher B. Karnauskas, Lamont–Doherty Earth Observatory, Columbia University, 301E Oceanography Bldg., 61 Route 9W, Palisades, NY 10964. Email: krisk@ldeo.columbia.edu

Save
  • Bacher, A., J. M. Oberhuber, and E. Roeckner, 1998: ENSO dynamics and seasonal cycle in the Tropical Pacific as simulated by the ECHAM4/OPYC3 coupled general circulation model. Climate Dyn., 14 , 431450.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65 , 11701186.

  • Bengtsson, L., M. Kanamitsu, P. Kallberg, and S. Uppala, 1982: FGGE 4-dimensional data assimilation at ECMWF. Bull. Amer. Meteor. Soc., 63 , 2943.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Capotondi, A., A. Wittenberg, and S. Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in the 20th century coupled simulations. Ocean Modell., 15 , 274298.

    • Search Google Scholar
    • Export Citation
  • Cerveny, R. S., 2005: Charles Darwin’s meteorological observations aboard the H.M.S. Beagle. Bull. Amer. Meteor. Soc., 86 , 12951301.

    • Search Google Scholar
    • Export Citation
  • Chen, D., L. M. Rothstein, and A. J. Busalacchi, 1994: A hybrid vertical mixing scheme and its application to tropical ocean models. J. Phys. Oceanogr., 24 , 21562179.

    • Search Google Scholar
    • Export Citation
  • Collins, M., 2000: The El Niño–Southern Oscillation in the second Hadley Centre coupled model and its response to greenhouse warming. J. Climate, 13 , 12991312.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Darwin, C., 1839: Journal of Researches into the Geology and Natural History of the Various Countries Visited by H.M.S. Beagle. Hafner Publishing, 615 pp. (1952, reprint.).

    • Search Google Scholar
    • Export Citation
  • Darwin, C., 1896: Journal of Researches into the Natural History and Geology of the Countries Visited during the Voyage of the. H.M.S. Beagle Round the World, under the Command of Capt. Fitz Roy, R.N. 2nd ed. D. Appleton and Company, 519 pp.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. H. Philander, 2000: Is El Niño changing? Science, 288 , 19972002.

  • Gent, P. R., and M. A. Cane, 1989: A reduced gravity, primitive equation model of the upper equatorial ocean. J. Comput. Phys., 81 , 444480.

    • Search Google Scholar
    • Export Citation
  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40 , 141.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Guilyardi, E., 2006: El Niño–mean state–seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26 , 329348.

  • Guilyardi, E., and Coauthors, 2004: Representing El Niño in coupled ocean–atmosphere GCMs: The dominant role of the atmospheric component. J. Climate, 17 , 46234629.

    • Search Google Scholar
    • Export Citation
  • Harrison, M. J., A. Rosati, B. J. Soden, E. Galanti, and E. Tziperman, 2002: An evaluation of air–sea flux products for ENSO simulation and prediction. Mon. Wea. Rev., 130 , 723732.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 511 pp.

  • Jin, F. F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karnauskas, K. B., R. Murtugudde, and A. J. Busalacchi, 2007: The effect of the Galápagos Islands on the equatorial Pacific cold tongue. J. Phys. Oceanogr., 37 , 12661281.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys. Res. Lett., 29 .2125, doi:10.1029/2002GL015924.

  • Kiladis, G. N., and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2 , 10691090.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and S. J. Turner, 1967: A one-dimensional model of the seasonal thermocline. Part II. Tellus, 19 , 98105.

  • Levitus, S., and T. Boyer, 1994: Temperature. Vol. 4. World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2442.

  • McPhaden, M., and X. Yu, 1999: Equatorial waves and the 1997–1998 El Niño. Geophys. Res. Lett., 26 , 29612964.

  • McPhaden, M. J., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415 , 603608.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and D. Zhang, 2004: Pacific Ocean circulation rebounds. Geophys. Res. Lett., 31 .L18301, doi:10.1029/2004GL020727.

  • Murtugudde, R., R. Seager, and A. Busalacchi, 1996: Simulation of the tropical oceans with an ocean GCM coupled to an atmospheric mixed layer model. J. Climate, 9 , 17951815.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91 , 84118427.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2 , 268284.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Schneider, E. K., D. G. DeWitt, A. Rosati, B. P. Kirtman, L. Ji, and J. J. Tribbia, 2003: Retrospective ENSO Forecasts: Sensitivity to atmospheric model and ocean resolution. Mon. Wea. Rev., 131 , 30383060.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Stockdale, T. N., A. J. Busalacchi, D. D. Harrison, and R. Seager, 1998: Ocean modeling for ENSO. J. Geophys. Res., 103 , 1432514356.

  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Sun, D-Z., T. Zhang, and S-I. Shin, 2004: The effect of subtropical cooling on the amplitude of ENSO: A numerical study. J. Climate, 17 , 37863798.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4 , 5384.

  • Wang, W., and M. J. McPhaden, 2000: The surface-layer heat balance in the equatorial Pacific Ocean. Part II: Interannual variability. J. Phys. Oceanogr., 30 , 29893008.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, N-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., 2005: Enhancement of ENSO’s persistence barrier by biennial variability in a coupled atmosphere–ocean general circulation model. Geophys. Res. Lett., 32 .L13707, doi:10.1029/2005GL023406.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate, 7 , 17191736.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 559 214 102
PDF Downloads 219 43 5