Abstract
A stratified bottom Ekman layer over a nonsloping, rough surface is studied using a three-dimensional unsteady large eddy simulation to examine the effects of an outer layer stratification on the boundary layer structure. When the flow field is initialized with a linear temperature profile, a three-layer structure develops with a mixed layer near the wall separated from a uniformly stratified outer layer by a pycnocline. With the free-stream velocity fixed, the wall stress increases slightly with the imposed stratification, but the primary role of stratification is to limit the boundary layer height. Ekman transport is generally confined to the mixed layer, which leads to larger cross-stream velocities and a larger surface veering angle when the flow is stratified. The rate of turning in the mixed layer is nearly independent of stratification, so that when stratification is large and the boundary layer thickness is reduced, the rate of veering in the pycnocline becomes very large. In the pycnocline, the mean shear is larger than observed in an unstratified boundary layer, which is explained using a buoyancy length scale, u*/N(z). This length scale leads to an explicit buoyancy-related modification to the log law for the mean velocity profile. A new method for deducing the wall stress based on observed mean velocity and density profiles is proposed and shows significant improvement compared to the standard profile method. A streamwise jet is observed near the center of the pycnocline, and the shear at the top of the jet leads to local shear instabilities and enhanced mixing in that region, despite the fact that the Richardson number formed using the mean density and shear profiles is larger than unity.
Corresponding author address: Sutanu Sarkar, Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093. Email: sarkar@ucsd.edu