A Two-Scale Approximation for Efficient Representation of Nonlinear Energy Transfers in a Wind Wave Spectrum. Part I: Theoretical Development

Donald T. Resio ERDC-Coastal and Hydraulics Lab, Vicksburg, Mississippi

Search for other papers by Donald T. Resio in
Current site
Google Scholar
PubMed
Close
and
William Perrie Fisheries & Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

Search for other papers by William Perrie in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new method for estimating the transfer rates in wind wave spectra is derived and tested, based on a two-scale approximation (TSA) to the total integral for quadruplet wave–wave interactions. Comparisons of this new estimation method to the full integral are given for several idealized spectra, including Joint North Sea Wave Project spectra with different peakednesses, a finite depth case, and cases with perturbations added to underlying parametric spectra. In particular, these comparisons show that the TSA is a significant improvement over the discrete interaction approximation (DIA) in deep water and an even greater improvement in shallow water.

Corresponding author address: William Perrie, Fisheries & Oceans Canada, BIO, Dartmouth, NS BZY4AZ, Canada. Email: perriew@dfo-mpo.gc.ca

Abstract

A new method for estimating the transfer rates in wind wave spectra is derived and tested, based on a two-scale approximation (TSA) to the total integral for quadruplet wave–wave interactions. Comparisons of this new estimation method to the full integral are given for several idealized spectra, including Joint North Sea Wave Project spectra with different peakednesses, a finite depth case, and cases with perturbations added to underlying parametric spectra. In particular, these comparisons show that the TSA is a significant improvement over the discrete interaction approximation (DIA) in deep water and an even greater improvement in shallow water.

Corresponding author address: William Perrie, Fisheries & Oceans Canada, BIO, Dartmouth, NS BZY4AZ, Canada. Email: perriew@dfo-mpo.gc.ca

Save
  • Barnett, T. P., 1968: On the generation dissipation and prediction of ocean wind waves. J. Geophys. Res., 73 , 513530.

  • Benoit, M., 2005: Evaluation of methods to compute the non-linear quadruplets interactions for deep-water spectra. Proc. Fifth Int. Symp. on Ocean Waves Measurement and Analysis, Madrid, Spain, ASCE 52, 1–10.

  • Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions 1. Model description and validation. J. Geophys. Res., 104 , 76497666.

    • Search Google Scholar
    • Export Citation
  • Bouws, E., H. Günther, W. Rosenthal, and C. L. Vincent, 1985: Similarity of the wind wave spectrum in finite dept water 1. Spectral form. J. Geophys. Res., 90 , 975986.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1980: Similarity theory applied to the forecasting of wave heights, periods, and directions. Proc. Canadian Coastal Conf., Burlington, Ontario, Canada, National Research Council, 47–61.

  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, A315 , 509562.

    • Search Google Scholar
    • Export Citation
  • Ewing, J. A., 1971: A numerical wave prediction method for the North Atlantic Ocean. Dtsch. Hydrogr. Z., 24 , 241261.

  • Hasselmann, K., 1962: On the nonlinear energy transfer in a gravity wave spectrum. Part 1. J. Fluid Mech., 12 , 481500.

  • Hasselmann, K., and Coauthors, 1973: Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft zur Deutschen Hydrographischen Zeits., 95 pp.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, S., and K. Hasselmann, 1985: Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceanogr., 15 , 13691377.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, S., K. Hasselmann, J. H. Allender, and T. P. Barnett, 1985: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15 , 13781391.

    • Search Google Scholar
    • Export Citation
  • Herterich, K., and K. Hasselmann, 1980: A similarity relation for the nonlinear energy transfer in a finite-depth gravity-wave spectrum. J. Fluid Mech., 97 , 215224.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., K. Hasselmann, and S. Hasselmann, 1984: On the existence of a fully developed windsea spectrum. J. Phys. Oceanogr., 14 , 12711285.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

    • Search Google Scholar
    • Export Citation
  • Lin, R. Q., and W. Perrie, 1997: A new coastal wave model. Part III: Nonlinear wave–wave interaction. J. Phys. Oceanogr., 27 , 18131826.

    • Search Google Scholar
    • Export Citation
  • Lin, R. Q., and W. Perrie, 1999: Wave-wave interactions in finite depth water. J. Geophys. Res., 104 , 1119311213.

  • Long, C. E., and D. T. Resio, 2007: Wind wave spectral observations in Currituck Sound, North Carolina. J. Geophys. Res., 112 .C05001, doi:10.1029/2006JC003835.

    • Search Google Scholar
    • Export Citation
  • Perrie, W., D. Resio, and A. Susilo, 2004: Energy-flux balances and source term parameterizations. Proc. Eighth Int. Workshop on Wave Hindcasting and Forecasting, Oahu, HI, 10 pp. [Available online at http:www.waveworkshop.org/8thWaves/Papers/Q3.pdf.].

  • Pettersson, H., 2004: Wave growth in a narrow bay. Ph.D. dissertation, University of Helsinki, 33 pp.

  • Phillips, O. M., 1960: The dynamics of unsteady gravity waves of finite amplitude. J. Fluid Mech., 9 , 193217.

  • Polnikov, V. G., 2002: A basing of the diffusion approximation derivation for the four-wave kinetic integral and properties of the approximation. Nonlinear Processes Geophys., 9 , 355366.

    • Search Google Scholar
    • Export Citation
  • Pushkarev, A. N., D. Resio, and V. E. Zakharov, 2004: Second generation diffusion model of interacting gravity waves on the surface of deep fluid. Nonlinear Processes Geophys., 11 , 329342.

    • Search Google Scholar
    • Export Citation
  • Resio, D. T., 1981: The estimation of wind-wave generation in a discrete spectral model. J. Phys. Oceanogr., 11 , 510525.

  • Resio, D. T., and W. Perrie, 1989: Implications of an f−4 equilibrium range for wind-generated waves. J. Phys. Oceanogr., 19 , 193204.

    • Search Google Scholar
    • Export Citation
  • Resio, D. T., and W. Perrie, 1991: A numerical study of nonlinear energy fluxes due to wave-wave interactions. Part 1: Methodology and basic results. J. Fluid Mech., 223 , 609629.

    • Search Google Scholar
    • Export Citation
  • Resio, D. T., J. H. Pihl, B. A. Tracy, and C. L. Vincent, 2001: Nonlinear energy fluxes and the finite depth equilibrium range in wave spectra. J. Geophys. Res., 106 , 69857000.

    • Search Google Scholar
    • Export Citation
  • Tracy, B. A., and D. T. Resio, 1982: Theory and calculation of the nonlinear energy transfer between sea waves in deep water. U.S. Army Engineer Waterways Experiment Station WES Rep. 11, 52 pp.

  • Van Vledder, G. Ph, 2006: The WRT method for the computation of non-linear four-wave interactions in discrete spectral wave models. Coastal Eng., 53 , 223242.

    • Search Google Scholar
    • Export Citation
  • WAMDI Group, 1988: The WAM model—A third generation oceans wave prediction model. J. Phys. Oceanogr., 18 , 17751810.

  • Webb, D. J., 1978: Non-linear transfers between sea waves. Deep-Sea Res., 25 , 279298.

  • Young, I. R., and G. Van Vledder, 1993: A review of the central role of nonlinear interactions in wind-wave evolution. Philos. Trans. Roy. Soc. London, A342 , 505524.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. E., and N. N. Filonenko, 1966: The energy spectrum for stochastic oscillation of a fluid’s surface. Dokl. Akad. Nauk SSSR, 170 , 19921995.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 382 188 9
PDF Downloads 137 38 3