Inferring the Pattern of the Oceanic Meridional Transport from the Air–Sea Density Flux

Timour Radko Department of Oceanography, Naval Postgraduate School, Monterey, California

Search for other papers by Timour Radko in
Current site
Google Scholar
PubMed
Close
,
Igor Kamenkovich Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Igor Kamenkovich in
Current site
Google Scholar
PubMed
Close
, and
Pierre-Yves Dare Department of Oceanography, Naval Postgraduate School, Monterey, California

Search for other papers by Pierre-Yves Dare in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An extension of Walin’s water mass transformation analysis is proposed that would make it possible to assess the strength of the adiabatic along-isopycnal component of the meridional overturning circulation (MOC). It is hypothesized that the substantial fraction of the adiabatic MOC component can be attributed to the difference in subduction rates at the northern and southern outcrops of each density layer—the “push–pull” mechanism. The GCM-generated data are examined and it is shown that the push–pull mode accounts for approximately two-thirds of the isopycnal water mass transport in the global budget and dominates the Atlantic transport. Much of the difference between the actual interhemispheric flux and the push–pull mode can be ascribed to the influence of the Antarctic Circumpolar Current, characterized by the elevated (at least in the GCM) values of the diapycnal transport. When the diagnostic model is applied to observations, it is discovered that the reconstructed MOC is consistent, in terms of the magnitude and sense of overturning, with earlier observational and modeling studies. The findings support the notion that the dynamics of the meridional overturning are largely controlled by the adiabatic processes—time-mean and eddy-induced advection of buoyancy.

* Current affiliation: Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Corresponding author address: Timour Radko, Dept. of Oceanography, Naval Postgraduate School, Monterey, CA 93943. Email: tradko@nps.edu

Abstract

An extension of Walin’s water mass transformation analysis is proposed that would make it possible to assess the strength of the adiabatic along-isopycnal component of the meridional overturning circulation (MOC). It is hypothesized that the substantial fraction of the adiabatic MOC component can be attributed to the difference in subduction rates at the northern and southern outcrops of each density layer—the “push–pull” mechanism. The GCM-generated data are examined and it is shown that the push–pull mode accounts for approximately two-thirds of the isopycnal water mass transport in the global budget and dominates the Atlantic transport. Much of the difference between the actual interhemispheric flux and the push–pull mode can be ascribed to the influence of the Antarctic Circumpolar Current, characterized by the elevated (at least in the GCM) values of the diapycnal transport. When the diagnostic model is applied to observations, it is discovered that the reconstructed MOC is consistent, in terms of the magnitude and sense of overturning, with earlier observational and modeling studies. The findings support the notion that the dynamics of the meridional overturning are largely controlled by the adiabatic processes—time-mean and eddy-induced advection of buoyancy.

* Current affiliation: Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Corresponding author address: Timour Radko, Dept. of Oceanography, Naval Postgraduate School, Monterey, CA 93943. Email: tradko@nps.edu

Save
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33 , 20312049.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, A. Adcroft, D. Ferreira, and J. Marshall, 2005: The vertical structure of the ocean heat transport. Geophys. Res. Lett., 32 .L10603, doi:10.1029/2005GL022474.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., and L. J. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84 , 25032517.

  • Cerovečki, I., and J. Marshall, 2008: Eddy modulation of air–sea interaction and convection. J. Phys. Oceanogr., 38 , 6583.

  • Da Silva, A., A. C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data, NOAA Atlas NESDIS 1, 83 pp.

    • Search Google Scholar
    • Export Citation
  • Donners, J., S. S. Drijfhout, and W. Hazeleger, 2005: Water mass transformation and subduction in the South Atlantic. J. Phys. Oceanogr., 35 , 18411860.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and A. Tandon, 1997: The effects on water mass formation of surface mixed layer time-dependence and entrainment fluxes. Deep-Sea Res. I, 44 , 19912006.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., K. Speer, and E. Tragou, 1995: The relationship between water mass formation and the surface buoyancy flux, with application to Phillip’s Red Sea model. J. Phys. Oceanogr., 25 , 16961705.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283 , 20772079.

  • Greatbatch, R. J., X. Zhai, C. Eden, and D. Olbers, 2007: The possible role in the ocean heat budget of eddy-induced mixing due to air–sea interaction. Geophys. Res. Lett., 32 .L07604, doi:10.1029/2007GL029533.

    • Search Google Scholar
    • Export Citation
  • Henning, C. C., and G. Vallis, 2004: The effects of mesoscale eddies on the main subtropical thermocline. J. Phys. Oceanogr., 34 , 24282443.

    • Search Google Scholar
    • Export Citation
  • Kamenovich, I. V., 2005: Role of daily surface forcing in setting the temperature and mixed layer structure of the Southern Ocean. J. Geophys. Res., 110 .C07006, doi:10.1029/2004JC002610.

    • Search Google Scholar
    • Export Citation
  • Karsten, R., and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32 , 33153327.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., 2006: The circulation of the eastern tropical Pacific: A review. Prog. Oceanogr., 69 , 181217.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Luyten, J., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13 , 292309.

  • Marshall, D., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res., 55 , 201222.

  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33 , 23412354.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2006: A model of the upper branch of the meridional overturning of the southern ocean. Prog. Oceanogr., 70 , 331345.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46 , 545572.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., H. Jones, R. Karsten, and R. Wardle, 2002: Can eddies set ocean stratification? J. Phys. Oceanogr., 32 , 2638.

  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res., 13 , 707730.

  • Olbers, D., D. Borowski, C. Volker, and J. O. Wolff, 2004: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci., 16 , 439470.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1999: MOM 3.0 manual: Documentation, user’s guide, and reference manual. NOAA/Geophysical Fluid Dynamics Laboratory, 668 pp.

  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 , 9396.

    • Search Google Scholar
    • Export Citation
  • Radko, T., 2007: A mechanism for establishment and maintenance of the meridional overturning in the upper ocean. J. Mar. Res., 65 , 85116.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and J. Marshall, 2004: Eddy-induced diapycnal fluxes and their role in the maintenance of the thermocline. J. Phys. Oceanogr., 34 , 372383.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and J. Marshall, 2006: The Antarctic Circumpolar Current in three dimensions. J. Phys. Oceanogr., 36 , 651669.

  • Robinson, A. R., and H. Stommel, 1959: The oceanic thermocline and the associated thermohaline circulation. Tellus, 11 , 295308.

  • Salmon, R., 1990: The thermocline as an “internal boundary layer”. J. Mar. Res., 48 , 437469.

  • Samelson, R. M., and G. K. Vallis, 1997: Large-scale circulation with small diapycnal diffusion: The two-thermocline limit. J. Mar. Res., 55 , 223275.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2000: Estimates of area-averaged diapycnal fluxes from basin-scale budgets. J. Phys. Oceanogr., 30 , 23202341.

    • Search Google Scholar
    • Export Citation
  • Speer, K., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22 , 93104.

  • Speer, K., H-J. Isemer, and A. Biastoch, 1995: Water mass formation from revised COADS data. J. Phys. Oceanogr., 25 , 24442457.

  • Speer, K., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30 , 32123222.

  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33 , 530560.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16 , 32133226.

    • Search Google Scholar
    • Export Citation
  • Tandon, A., and K. Zahariev, 2001: Quantifying the role of mixed layer entrainment for water mass transformation in the North Atlantic. J. Phys. Oceanogr., 31 , 11201131.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and H. Goosse, 2004: Is the wind stress forcing essential for the meridional overturning circulation? Geophys. Res. Lett., 31 .L04303, doi:10.1029/2003GL018777.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1998: On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28 , 18321852.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 34333443.

  • Tziperman, E., 1986: On the role of interior mixing and air–sea fluxes in determining the stratification and circulation of the oceans. J. Phys. Oceanogr., 16 , 680693.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34 , 187195.

  • Webb, D. J., and N. Suginohara, 2001: Vertical mixing in the ocean. Nature, 409 , 37.

  • Welander, P., 1986: Thermohaline effects in the ocean circulation and related simple models. Large-Scale Transport Processes in Oceans and Atmosphere, J. Willebrand and D. L. T. Anderson, Eds., D. Reidel, 163–200.

    • Search Google Scholar
    • Export Citation
  • Whitehead, J. A., 1995: Thermohaline ocean processes and models. Annu. Rev. Fluid Mech., 27 , 89113.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 , 281314.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 395 269 4
PDF Downloads 76 32 3