Optimal Surface Salinity Perturbations of the Meridional Overturning and Heat Transport in a Global Ocean General Circulation Model

Florian Sévellec Laboratoire de Physique des Océans, Université de Bretagne Occidentale, Brest, France

Search for other papers by Florian Sévellec in
Current site
Google Scholar
PubMed
Close
,
Thierry Huck Laboratoire de Physique des Océans, Université de Bretagne Occidentale, Brest, France

Search for other papers by Thierry Huck in
Current site
Google Scholar
PubMed
Close
,
Mahdi Ben Jelloul Laboratoire de Physique des Océans, Université de Bretagne Occidentale, Brest, France

Search for other papers by Mahdi Ben Jelloul in
Current site
Google Scholar
PubMed
Close
,
Nicolas Grima Laboratoire de Physique des Océans, Université de Bretagne Occidentale, Brest, France

Search for other papers by Nicolas Grima in
Current site
Google Scholar
PubMed
Close
,
Jérôme Vialard IRD, LOCEAN, Paris, France

Search for other papers by Jérôme Vialard in
Current site
Google Scholar
PubMed
Close
, and
Anthony Weaver CERFACS, Toulouse, France

Search for other papers by Anthony Weaver in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent observations and modeling studies have stressed the influence of surface salinity perturbations on the North Atlantic circulation over the past few decades. As a step toward the estimation of the sensitivity of the thermohaline circulation to salinity anomalies, optimal initial surface salinity perturbations are computed and described for a realistic mean state of a global ocean general circulation model [Océan Parallélisé (OPA)]; optimality is defined successively with respect to the meridional overturning circulation intensity and the meridional heat transport maximum. Although the system is asymptotically stable, the nonnormality of the dynamics is able to produce a transient growth through an initial stimulation. Optimal perturbations are calculated subject to three constraints: the perturbation applies to surface salinity; the perturbation conserves the global salt content; and the perturbation is normalized, to remove the degeneracy in the linear maximization problem. Maximization using Lagrangian multipliers leads to explicit solutions (rather than eigenvalue problems), involving the integration of the model adjoint for each value to maximize.

The most efficient transient growth for the intensity of the meridional overturning circulation appears for a delay of 10.5 yr after the perturbation by the optimal surface salinity anomaly. This optimal growth is induced by an initial anomaly located north of 50°N. In the same way, the most efficient transient growth for the intensity of the meridional heat transport appears for a shorter delay of 2.2 yr after the perturbation by the optimal surface salinity anomaly. This initial optimal perturbation corresponds to a zonal salinity gradient around 24°N. The optimal surface salinity perturbations studied herein yield upper bounds on the intensity of the response in meridional overturning circulation and meridional heat transport. Using typical amplitudes of the Great Salinity Anomalies, the upper bounds for the associated variability are 0.8 Sv (1 Sv ≡ 106 m3 s−1) (11% of the mean circulation) and 0.03 PW (5% of the mean circulation), respectively.

Corresponding author address: Florian Sévellec, Department of Geology and Geophysics, Yale University, 210 Whitney Ave., P.O. Box 208109, New Haven, CT 06520–8109. Email: florian.sevellec@locean-ipsl.upmc.fr

Abstract

Recent observations and modeling studies have stressed the influence of surface salinity perturbations on the North Atlantic circulation over the past few decades. As a step toward the estimation of the sensitivity of the thermohaline circulation to salinity anomalies, optimal initial surface salinity perturbations are computed and described for a realistic mean state of a global ocean general circulation model [Océan Parallélisé (OPA)]; optimality is defined successively with respect to the meridional overturning circulation intensity and the meridional heat transport maximum. Although the system is asymptotically stable, the nonnormality of the dynamics is able to produce a transient growth through an initial stimulation. Optimal perturbations are calculated subject to three constraints: the perturbation applies to surface salinity; the perturbation conserves the global salt content; and the perturbation is normalized, to remove the degeneracy in the linear maximization problem. Maximization using Lagrangian multipliers leads to explicit solutions (rather than eigenvalue problems), involving the integration of the model adjoint for each value to maximize.

The most efficient transient growth for the intensity of the meridional overturning circulation appears for a delay of 10.5 yr after the perturbation by the optimal surface salinity anomaly. This optimal growth is induced by an initial anomaly located north of 50°N. In the same way, the most efficient transient growth for the intensity of the meridional heat transport appears for a shorter delay of 2.2 yr after the perturbation by the optimal surface salinity anomaly. This initial optimal perturbation corresponds to a zonal salinity gradient around 24°N. The optimal surface salinity perturbations studied herein yield upper bounds on the intensity of the response in meridional overturning circulation and meridional heat transport. Using typical amplitudes of the Great Salinity Anomalies, the upper bounds for the associated variability are 0.8 Sv (1 Sv ≡ 106 m3 s−1) (11% of the mean circulation) and 0.03 PW (5% of the mean circulation), respectively.

Corresponding author address: Florian Sévellec, Department of Geology and Geophysics, Yale University, 210 Whitney Ave., P.O. Box 208109, New Haven, CT 06520–8109. Email: florian.sevellec@locean-ipsl.upmc.fr

Save
  • Arzel, O., T. Huck, and A. C. de Verdière, 2006: The different nature of the interdecadal variability of the thermohaline circulation under mixed and flux boundary conditions. J. Phys. Oceanogr., 36 , 17031718.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., S. Levitus, J. Antonov, and S-A. Malmberg, 1998: “Great salinity anomalies” in the North Atlantic. Prog. Oceanogr., 41 , 168.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23 , 13631388.

    • Search Google Scholar
    • Export Citation
  • Bugnion, V., C. Hill, and P. H. Stone, 2006a: An adjoint analysis of the meridional overturning circulation in a hybrid coupled model. J. Climate, 19 , 37513767.

    • Search Google Scholar
    • Export Citation
  • Bugnion, V., C. Hill, and P. H. Stone, 2006b: An adjoint analysis of the meridional overturning circulation in an ocean model. J. Climate, 19 , 37323750.

    • Search Google Scholar
    • Export Citation
  • Curry, R., and C. Mauritzen, 2005: Dilution of the northern North Atlantic Ocean in recent decades. Science, 308 , 17721774.

  • Curry, R., B. Dickson, and I. Yashayaev, 2003: A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature, 426 , 826829.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6 , 19932011.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., and M. Ghil, 2005: Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach. Rev. Geophys., 43 .RG3002, doi:10.1029/2002RG000122.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. T. Sutton, 2005: Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J. Climate, 18 , 11171135.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and A. M. Moore, 1992: An adjoint method for obtaining the most rapidly growing perturbation to oceanic flows. J. Phys. Oceanogr., 22 , 338349.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1996a: Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sci., 35 , 20252040.

  • Farrell, B. F., and P. J. Ioannou, 1996b: Generalized stability theory. Part II: Nonautonomous operators. J. Atmos. Sci., 53 , 20412053.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Haak, H., J. Jungclaus, U. Mikolajewicz, and M. Latif, 2003: Formation and propagation of great salinity anomalies. Geophys. Res. Lett., 30 .1473, doi:10.1029/2003GL017065.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., 1999: A simulation of thermohaline effects of a great salinity anomaly. J. Climate, 12 , 17811795.

  • Huck, T., and G. K. Vallis, 2001: Linear stability analysis of three-dimensional thermally-driven ocean circulation: Application to interdecadal oscillations. Tellus, 53A , 526545.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., and R. Marsh, 2005: Surface freshwater flux variability and recent freshening of the North Atlantic in the eastern subpolar gyre. J. Geophys. Res., 110 .C05008, doi:10.1029/2004JC002521.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1989: Interpentadal variability of temperature and salinity at intermediate depths of the North Atlantic ocean, 1970–1974 versus 1955–1959. J. Geophys. Res., 94 , 96799685.

    • Search Google Scholar
    • Export Citation
  • Madec, G., and M. Imbard, 1996: A global ocean mesh to overcome the North Pole singularity. Climate Dyn., 12 , 381388.

  • Madec, G., and Coauthors, 1998: OPA 8.1 Ocean General Circulation Model reference manual. Institut Pierre-Simon Laplace Tech. Rep. 11, 91 pp.

  • Marotzke, J., 1996: Analysis of thermohaline feedbacks. Decadal Climate Variability: Dynamics and Predictability, D. L. T. Anderson and J. Willebrand, Eds., NATO ASI Series, Vol. 44, Springer, 333–378.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., and B. F. Farrell, 1993: Rapid perturbation growth on spatially and temporally varying oceanic flows determined using an adjoint method: Application to the Gulf Stream. J. Phys. Oceanogr., 23 , 16821702.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., C. L. Perez, and J. Zavala-Garay, 2002: A non-normal view of the wind-driven ocean circulation. J. Phys. Oceanogr., 32 , 26812705.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., J. Vialard, A. T. Weaver, D. L. T. Anderson, and J. R. Johnson, 2003: The role of air–sea interaction in controlling the optimal perturbations of low-frequency tropical coupled ocean–atmosphere modes. J. Climate, 16 , 951968.

    • Search Google Scholar
    • Export Citation
  • Mu, M., and Z. Zhang, 2006: Conditional nonlinear optimal perturbations of a two-dimensional quasigeostrophic model. J. Atmos. Sci., 63 , 15871604.

    • Search Google Scholar
    • Export Citation
  • Mu, M., L. Sun, and H. A. Dijkstra, 2004: The sensitivity and stability of the ocean’s thermohaline circulation to finite amplitude perturbations. J. Phys. Oceanogr., 34 , 23052315.

    • Search Google Scholar
    • Export Citation
  • Sévellec, F., M. Ben Jelloul, and T. Huck, 2007: Optimal surface salinity perturbations influencing the thermohaline circulation. J. Phys. Oceanogr., 37 , 27892808.

    • Search Google Scholar
    • Export Citation
  • Sirkes, Z., and E. Tziperman, 2001: Identifying a damped oscillatory thermohaline mode in a general circulation model using an adjoint model. J. Phys. Oceanogr., 31 , 22972305.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with stable regimes flow. Tellus, 13 , 224230.

  • Sun, L., M. Mu, D-J. Sun, and X-Y. Yin, 2005: Passive mechanism of decadal variation of thermohaline circulation. J. Geophys. Res., 110 .C07025, doi:10.1029/2005JC002897.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16 , 32133226.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., 1997: Inherently unstable climate behaviour due to weak thermohaline ocean circulation. Nature, 386 , 592595.

  • Tziperman, E., and P. J. Ioannou, 2002: Transient growth and optimal excitation of thermohaline variability. J. Phys. Oceanogr., 32 , 34273435.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., J. Vialard, and D. L. T. Anderson, 2003: Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part I: Formulation, internal diagnostics, and consistency checks. Mon. Wea. Rev., 131 , 13601378.

    • Search Google Scholar
    • Export Citation
  • Zanna, L., and E. Tziperman, 2005: Nonnormal amplification of the thermohaline circulation. J. Phys. Oceanogr., 35 , 15931605.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 374 231 22
PDF Downloads 120 55 7