• Bacon, S., , W. J. Gould, , and Y. Jia, 2003: Open-ocean convection in the Irminger Sea. Geophys. Res. Lett., 30 .1246, doi:10.1029/2002GL016271.

    • Search Google Scholar
    • Export Citation
  • Bakalian, F., , S. Hameed, , and R. Pickart, 2007: Influence of the Icelandic Low latitude on the frequency of Greenland tip jet events: Implications for Irminger Sea convection. J. Geophys. Res., 112 .C04020, doi:10.1029/2006JC003807.

    • Search Google Scholar
    • Export Citation
  • Bramson, L., 1997: Air-sea interactions and deep convection in the Labrador Sea. M.S. thesis, Department of Oceanography, Naval Postgraduate School, 76 pp.

  • Centurioni, L. R., , and W. J. Gould, 2004: Winter conditions in the Irminger Sea observed with profiling floats. J. Mar. Res., 62 , 313336.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , M. H. Freilich, , and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303 , 978983.

    • Search Google Scholar
    • Export Citation
  • Clarke, R. A., , and J-C. Gascard, 1983: The formation of Labrador Sea water. Part I: Large-scale processes. J. Phys. Oceanogr., 13 , 17641778.

    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., , K. B. Katsaros, , S. D. Smith, , R. J. Anderson, , W. A. Oost, , K. Bumke, , and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results. J. Geophys. Res., 101 , 1200112016.

    • Search Google Scholar
    • Export Citation
  • Dickson, R., , and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, rates, and pathways. J. Geophys. Res., 99 , 1231912342.

    • Search Google Scholar
    • Export Citation
  • Dickson, R., , J. Lazier, , J. Meincke, , P. Rhines, , and J. Swift, 1996: Long-term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr., 38 , 241295.

    • Search Google Scholar
    • Export Citation
  • Doherty, K. W., , D. E. Frye, , S. P. Liberatore, , and J. M. Toole, 1999: A moored profiling instrument. J. Atmos. Oceanic Technol., 16 , 18161829.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., , and M. A. Shapiro, 1999: Flow response to large-scale topography: The Greenland tip jet. Tellus, 51A , 728748.

  • Fairall, C. W., , E. F. Bradley, , J. E. Hare, , A. A. Grachev, , and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Falina, A., , A. Sarafanov, , and A. Sokov, 2007: Variability and renewal of Labrador Sea Water in the Irminger Basin in 1991–2004. J. Geophys. Res., 112 .C01006, doi:10.1029/2005JC003348.

    • Search Google Scholar
    • Export Citation
  • Fratantoni, D. M., 2001: North Atlantic surface circulation during the 1990’s observed with satellite-tracked drifters. J. Geophys. Res., 106 , 2206722094.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59 , 10411061.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Lab Sea Group, 1998: The Labrador Sea deep convection experiment. Bull. Amer. Meteor. Soc., 79 , 20332058.

  • Lavender, K., , R. Davis, , and W. Owens, 2000: Mid-depth recirculation observed in the interior Labrador and Irminger seas by direct velocity measurements. Nature, 407 , 6669.

    • Search Google Scholar
    • Export Citation
  • Lavender, K., , W. Owens, , and R. Davis, 2005: The mid-depth circulation of the subpolar North Atlantic Ocean as measured by subsurface floats. Deep-Sea Res. I, 52 , 767785.

    • Search Google Scholar
    • Export Citation
  • Lazier, J., , R. Hendry, , A. Clarke, , I. Yashayaev, , and P. Rhines, 2002: Convection and restratification in the Labrador Sea, 1990–2000. Deep-Sea Res. I, 49 , 18191835.

    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., , P. B. Rhines, , M. Visbeck, , R. Davis, , J. Lazier, , F. Schott, , and D. Farmer, 1999: Observing deep convection in the Labrador Sea during winter 1994/95. J. Phys. Oceanogr., 29 , 20652098.

    • Search Google Scholar
    • Export Citation
  • Lorbacher, K., , D. Dommenget, , P. P. Niiler, , and A. Köhl, 2006: Ocean mixed layer depth: A subsurface proxy of ocean-atmosphere variability. J. Geophys. Res., 111 .C07010, doi:10.1029/2003JC002157.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37 , 164.

  • McCartney, M., 1992: Recirculating components to the deep boundary current of the northern North Atlantic. Prog. Oceanogr., 29 , 283383.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., 2003: Gale force winds over the Irminger Sea to the east of Cape Farewell, Greenland. Geophys. Res. Lett., 30 .1894, doi:10.1029/2003GL018012.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., , and I. A. Renfrew, 2002: An assessment of the surface turbulent heat fluxes from the NCEP–NCAR reanalysis over the western boundary currents. J. Climate, 15 , 20202037.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., , and I. A. Renfrew, 2005: Tip jets and barrier winds: A QuikSCAT climatology of high wind speed events around Greenland. J. Climate, 18 , 37133725.

    • Search Google Scholar
    • Export Citation
  • Petersen, G. N., , H. Ólafsson, , and J. E. Kristjánsson, 2003: Flow in the lee of idealized mountains and Greenland. J. Atmos. Sci., 60 , 21832195.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., , D. J. Torres, , and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32 , 428457.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., , F. Straneo, , and G. W. K. Moore, 2003a: Is Labrador Sea Water formed in the Irminger basin? Deep-Sea Res. I, 50 , 2352.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., , M. A. Spall, , M. H. Ribergaard, , G. W. K. Moore, , and R. F. Milliff, 2003b: Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424 , 152156.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., , R. A. Weller, , and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91 , 84118427.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., , G. W. K. Moore, , P. S. Guest, , and K. Bumke, 2002: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32 , 383400.

    • Search Google Scholar
    • Export Citation
  • Schmitz Jr., W. J., , and M. S. McCartney, 1993: On the North Atlantic circulation. Rev. Geophys., 31 , 2950.

  • Schott, F., , M. Visbeck, , and J. Fischer, 1993: Observations of vertical currents and convection in the central Greenland Sea during the winter of 1988–1989. J. Geophys. Res., 98 , 1440114422.

    • Search Google Scholar
    • Export Citation
  • Schott, F., , M. Visbeck, , U. Send, , J. Fischer, , L. Stramma, , and Y. Desaubies, 1996: Observations of deep convection in the Gulf of Lions, northern Mediterranean, during the winter of 1991/92. J. Phys. Oceanogr., 26 , 505524.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , F. Carse, , R. G. Barry, , and J. C. Rogers, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10 , 453464.

    • Search Google Scholar
    • Export Citation
  • Smith, S., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93 , 1546715472.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., , and R. S. Pickart, 2003: Wind-driven recirculations and exchange in the Labrador and Irminger Seas. J. Phys. Oceanogr., 33 , 18291845.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., , R. S. Pickart, , and K. Lavender, 2003: Spreading of Labrador Sea water: An advective-diffusive study based on Lagrangian data. Deep-Sea Res. I, 50 , 701719.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., , M. W. Johnson, , and R. H. Fleming, 1942: The Oceans: Their Physics, Chemistry, and General Biology. Prentice-Hall, 1087 pp.

    • Search Google Scholar
    • Export Citation
  • Sy, A., , M. Rhein, , J. Lazier, , K. Koltermann, , J. Meincke, , A. Putzka, , and M. Bersch, 1997: Surprisingly rapid spreading of newly formed intermediate waters across the North Atlantic Ocean. Nature, 386 , 675679.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33 , 530560.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., , and M. S. McCartney, 1982: Distribution and circulation of Labrador Sea water. J. Phys. Oceanogr., 12 , 11891205.

  • Toole, J. M., , K. W. Doherty, , D. E. Frye, , and S. P. Liberatore, 1999: Velocity measurements from a moored profiling instrument. Proc. IEEE Sixth Working Conf. on Current Measurement, San Diego, CA, IEEE, 144–149.

  • Tsukernik, M., , D. N. Kindig, , and M. C. Serreze, 2007: Characteristics of winter cyclone activity in the northern North Atlantic: Insights from observations and regional modeling. J. Geophys. Res., 112 .D03101, doi:10.1029/2006JD007184.

    • Search Google Scholar
    • Export Citation
  • Våge, K., 2006: Winter mixed layer development in the central Irminger Sea: The effect of strong, intermittent wind events. M.S. thesis, Joint Program in Physical Oceanography, Woods Hole Oceanographic Institute and Massachusetts Institute of Technology, 79 pp. [Available online at http://www.whoi.edu/science/PO/pickart/Online_pubs_main.htm.].

  • Vautard, R., 1990: Multiple weather regimes over the North Atlantic: Analysis of precursors and successors. Mon. Wea. Rev., 118 , 20562081.

    • Search Google Scholar
    • Export Citation
  • Wang, D., 2003: Entrainment laws and a bulk mixed layer model of rotating convection derived from large-eddy simulations. Geophys. Res. Lett., 30 .1929, doi:10.1029/2003GL017869.

    • Search Google Scholar
    • Export Citation
  • Wentz, F., , D. Smith, , C. Mears, , and C. Gentemann, 2001: Advanced algorithms for QuikScat and SeaWinds/AMSR. Proc. Int. Geosci. Remote Sens. Symp. (IGARSS’01), Sydney, Australia, IEEE, 1079–1081.

  • Yu, L., , and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88 , 527539.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 101 101 19
PDF Downloads 79 79 19

Winter Mixed Layer Development in the Central Irminger Sea: The Effect of Strong, Intermittent Wind Events

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 University of Toronto, Toronto, Ontario, Canada
  • | 3 Danish Meteorological Institute, Copenhagen, Denmark
© Get Permissions
Restricted access

Abstract

The impact of the Greenland tip jet on the wintertime mixed layer of the southwest Irminger Sea is investigated using in situ moored profiler data and a variety of atmospheric datasets. The mixed layer was observed to reach 400 m in the spring of 2003 and 300 m in the spring of 2004. Both of these winters were mild and characterized by a low North Atlantic Oscillation (NAO) index. A typical tip jet event is associated with a low pressure system that is advected by upper-level steering currents into the region east of Cape Farewell and interacts with the high topography of southern Greenland. Heat flux time series for the mooring site were constructed that include the enhancing influence of the tip jet events. This was used to force a one-dimensional mixed layer model, which was able to reproduce the observed envelope of mixed layer deepening in both winters. The deeper mixed layer of the first winter was largely due to a higher number of robust tip jet events, which in turn was caused by the steering currents focusing more storms adjacent to southern Greenland. Application of the mixed layer model to the winter of 1994–95, a period characterized by a high-NAO index, resulted in convection exceeding 1700 m. This prediction is consistent with hydrographic data collected in summer 1995, supporting the notion that deep convection can occur in the Irminger Sea during strong winters.

Corresponding author address: Kjetil Våge, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: kjetil@whoi.edu

Abstract

The impact of the Greenland tip jet on the wintertime mixed layer of the southwest Irminger Sea is investigated using in situ moored profiler data and a variety of atmospheric datasets. The mixed layer was observed to reach 400 m in the spring of 2003 and 300 m in the spring of 2004. Both of these winters were mild and characterized by a low North Atlantic Oscillation (NAO) index. A typical tip jet event is associated with a low pressure system that is advected by upper-level steering currents into the region east of Cape Farewell and interacts with the high topography of southern Greenland. Heat flux time series for the mooring site were constructed that include the enhancing influence of the tip jet events. This was used to force a one-dimensional mixed layer model, which was able to reproduce the observed envelope of mixed layer deepening in both winters. The deeper mixed layer of the first winter was largely due to a higher number of robust tip jet events, which in turn was caused by the steering currents focusing more storms adjacent to southern Greenland. Application of the mixed layer model to the winter of 1994–95, a period characterized by a high-NAO index, resulted in convection exceeding 1700 m. This prediction is consistent with hydrographic data collected in summer 1995, supporting the notion that deep convection can occur in the Irminger Sea during strong winters.

Corresponding author address: Kjetil Våge, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: kjetil@whoi.edu

Save