• Allen, G. P., , J. C. Salomon, , P. Bassoullet, , Y. Du Penhoat, , and C. De Grandpre, 1980: Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sediment. Geol., 26 , 6990.

    • Search Google Scholar
    • Export Citation
  • Andersen, T., , and M. Pejrup, 2001: Suspended sediment transport on a temperate, microtidal mudflat, the Danish Wadden Sea. Mar. Geol., 173 , 6985.

    • Search Google Scholar
    • Export Citation
  • Andersen, T., , M. Pejrup, , O. Mikkelsen, , and A. Møller, 2000: Deposition and mixing depths on some European intertidal mudflats based on 210Pb and 137Cs activities. Cont. Shelf Res., 20 , 15691591.

    • Search Google Scholar
    • Export Citation
  • Banas, N. S., , and B. M. Hickey, 2005: Mapping exchange and residence time in a model of Willapa Bay, Washington, a branching, microtidal estuary. J. Geophys. Res., 110 .C11011, doi:10.1029/2005JC002950.

    • Search Google Scholar
    • Export Citation
  • Bartholdy, J., 2000: Processes controlling import of fine-grained sediments to tidal areas: A simulation model. Coastal and Estuarine Environments: Sedimentology, Geomorphology and Geoarchaeology, K. Pye and J. R. L. Allen, Eds., Geological Society of London, 435 pp.

    • Search Google Scholar
    • Export Citation
  • Baumert, H., , and G. Radach, 1992: Hysteresis of turbulent kinetic energy in nonrotational tidal flows: A model study. J. Geophys. Res., 97 , 36693677.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., 1995: Turbulence modeling with applications to thermal boundary layers in the ocean and currents in Wadden Sea areas (in German). Rep. 95/E/30, GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht, Germany, 299 pp.

  • Burchard, H., 1998: Presentation of a new numerical model for turbulent flow in estuaries. Proc. Third Int. Conf. on Hydroinformatics, Copenhagen, Denmark, Balkema, 41–48.

  • Burchard, H., 1999: Recalculation of surface slopes as forcing for numerical water column models of tidal flow. App. Math. Model., 23 , 737755.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., 2002: Applied Turbulence Modelling in Marine Waters. Lecture Notes in Earth Sciences, Vol. 100, Springer, 215 pp.

  • Burchard, H., , and H. Baumert, 1998: The formation of estuarine turbidity maxima due to density effects in the salt wedge. A hydrodynamic process study. J. Phys. Oceanogr., 28 , 309321.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., , and K. Bolding, 2001: Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer. J. Phys. Oceanogr., 31 , 19431968.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., , and K. Bolding, 2002: GETM—A general estuarine transport model. Scientific documentation, Tech. Rep. EUR 20253 EN, European Commission, 157 pp.

  • Burchard, H., , K. Bolding, , T. P. Rippeth, , A. Stips, , J. H. Simpson, , and J. Sündermann, 2002: Microstructure of turbulence in the northern North Sea: A comparative study of observations and model simulations. J. Sea Res., 47 , 223238.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., , K. Bolding, , and M. R. Villarreal, 2004: Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary. Ocean Dyn., 54 , 250265.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., , K. Bolding, , H. Lass, , V. Mohrholz, , L. Umlauf, , J. Sellschopp, , V. Fiekas, , and L. Arneborg, 2005: Dynamics of medium-intensity dense water plumes in the Arkona Basin, western Baltic Sea. Ocean Dyn., 55 , 391402.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., , K. Bolding, , F. Janssen, , L. Umlauf, , and H. Rennau, 2007: Model simulations of dense bottom currents in the Western Baltic Sea. Cont. Shelf Res., in press.

    • Search Google Scholar
    • Export Citation
  • Cheng, Y., , V. M. Canuto, , and A. M. Howard, 2002: An improved model for the turbulent PBL. J. Atmos. Sci., 59 , 15501565.

  • De Haas, H., , and D. Eisma, 1993: Suspended matter transport in the Dollard Estuary. Neth. J. Sea Res., 31 , 3742.

  • Dick, S., 1987: Tidal currents around Sylt. Numerical investigations for the semi-diurnal principal lunar tide (M2) (in German). Dtsch. Hydrogr. Z., 40 , 2544.

    • Search Google Scholar
    • Export Citation
  • Dronkers, J., 1986a: Tidal asymmetry and estuarine morphology. Neth. J. Sea Res., 20 , 117131.

  • Dronkers, J., 1986b: Tide-induced residual transport of fine sediment. Physics of Shallow Estuaries and Bays, J. Van de Kreeke, Ed., Springer-Verlag, 228–244.

    • Search Google Scholar
    • Export Citation
  • Dyer, K. R., 1988: Fine sediment particle transport in estuaries. Physical Processes in Estuaries, J. Dronkers and W. van Leussen, Eds., Springer-Verlag, 295–320.

    • Search Google Scholar
    • Export Citation
  • Dyer, K. R., 1994: Estuarine sediment transport and deposition. Sediment Transport and Depositional Processes, K. Pye, Ed., Blackwell, 193–218.

    • Search Google Scholar
    • Export Citation
  • Eisma, D., 1993: Sedimentation in the Dutch-German Wadden Sea. Mitteilungen des Geologisch-Paläontologischen Instituts der Universität Hamburg, 74, 253–274.

  • Ezer, T., 2005: Entrainment, diapycnal mixing and transport in three-dimensional bottom gravity current simulations using the Mellor–Yamada turbulence scheme. Ocean Modell., 9 , 151168.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., , and G. L. Mellor, 2004: A generalized coordinate ocean model and a comparison of the bottom boundary layer dynamics in terrain-following and in z-level grids. Ocean Modell., 6 , 379403.

    • Search Google Scholar
    • Export Citation
  • Festa, J. F., , and D. V. Hansen, 1978: Turbidity maxima in partially mixed estuaries: A two-dimensional numerical model. Estuarine Coastal Mar. Sci., 7 , 347359.

    • Search Google Scholar
    • Export Citation
  • Fischer, H. B., , E. J. List, , R. C. Y. Koh, , J. Imberger, , and N. H. Brooks, 1979: Mixing in Inland and Coastal Waters. Academic Press, 483 pp.

    • Search Google Scholar
    • Export Citation
  • Flemming, B. W., , and N. Nyandwi, 1994: Land reclamation as a cause of fine-grained sediment depletion in backbarrier tidal flats (southern North Sea). Neth. J. Aquat. Ecol., 28 , 299307.

    • Search Google Scholar
    • Export Citation
  • Fofonoff, N. P., , and R. C. Millard, 1983: Algorithms for the computation of fundamental properties of seawater. Unesco Tech. Paper in Marine Sciences 44, 53 pp.

  • Geyer, W. R., 1993: The importance of suppression of turbulence by stratification on the estuarine turbidity maximum. Estuaries, 16 , 113125.

    • Search Google Scholar
    • Export Citation
  • Groen, P., 1967: On the residual transport of suspended matter by an alternating tidal current. Neth. J. Sea Res., 3 , 564574.

  • Haney, R. L., 1991: On the pressure gradient force over steep topography in sigma coordinate ocean models. J. Phys. Oceanogr., 21 , 610619.

    • Search Google Scholar
    • Export Citation
  • Jay, D. A., , and J. D. Musiak, 1994: Particle trapping in estuarine tidal flows. J. Geophys. Res., 99 , 2044520461.

  • Kliem, N., , and J. D. Pietrzak, 1999: On the pressure gradient error in sigma coordinate ocean models: A comparison with a laboratory experiment. J. Geophys. Res., 104 , 2978129800.

    • Search Google Scholar
    • Export Citation
  • Leonard, B. P., 1991: The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput. Meth. Appl. Mech. Eng., 88 , 1774.

    • Search Google Scholar
    • Export Citation
  • Lumborg, U., , and A. Windelin, 2003: Hydrography and cohesive sediment modelling: Application to the Rømø Dyb tidal area. J. Mar. Syst., 38 , 287303.

    • Search Google Scholar
    • Export Citation
  • Lumborg, U., , and M. Pejrup, 2005: Modelling of cohesive sediment transport in a tidal lagoon—An annual budget. Mar. Geol., 218 , 116.

    • Search Google Scholar
    • Export Citation
  • Monismith, S. G., , J. R. Burau, , and M. Stacey, 1996: Hydrodynamic transport and mixing processes in Suisun Bay. San Francisco Bay: The Ecosystem, J. T. Hollibaugh, Ed., American Association for the Advancement of Science, 123–153.

    • Search Google Scholar
    • Export Citation
  • Pedersen, J. B. T., , and J. Bartholdy, 2006: Budgets for fine-grained sediments in the Danish Wadden Sea. Mar. Geol., 235 , 101117.

  • Pejrup, M., 1988a: Flocculated suspended sediment in a micro-tidal environment. Sediment. Geol., 57 , 249256.

  • Pejrup, M., 1988b: Suspended sediment transport across a tidal flat. Mar. Geol., 82 , 187198.

  • Pejrup, M., , M. Larsen, , and K. Edelvang, 1997: A fine-grained sediment budget for the Sylt-Rømø tidal basin. Helgol. Meeresunt., 51 , 252268.

    • Search Google Scholar
    • Export Citation
  • Pietrzak, J., 1998: The use of TVD limiters for forward-in-time upstream-biased advection schemes in ocean modeling. Mon. Wea. Rev., 126 , 812830.

    • Search Google Scholar
    • Export Citation
  • Postma, H., 1954: Hydrography of the Dutch Wadden Sea. Archs. Neerl. Zool., 10 , 405511.

  • Postma, H., 1961: Transport and accumulation of suspended particulate matter in the Dutch Wadden Sea. Neth. J. Sea Res., 1 , 149190.

  • Postma, H., 1981: Exchange of materials between the North Sea and the Wadden Sea. Mar. Geol., 40 , 199213.

  • Postma, H., , and K. Kalle, 1955: The generation of turbidity zones in the lower course of rivers, with special consideration of the lower Elbe estuary (in German). Dtsch. Hydrogr. Z., 8 , 137144.

    • Search Google Scholar
    • Export Citation
  • Puls, W., , H. Heinrich, , and B. Mayer, 1997: Suspended particulate matter budget for the German Bight. Mar. Pollut. Bull., 34 , 398409.

  • Rathlev, J., 1980: A simple salinity formula for the practical use, which agrees with the latest Unesco recommendation (in German). Dtsch. Hydrogr. Z., 33 , 124131.

    • Search Google Scholar
    • Export Citation
  • Ridderinkhof, H., , R. Van der Ham, , and W. Van der Lee, 2000: Temporal variations in concentration and transport of suspended sediments in a channel-flat system in the Ems-Dollard estuary. Cont. Shelf Res., 20 , 14791493.

    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., , N. R. Fisher, , and J. H. Simpson, 2001: The cycle of turbulent dissipation in the presence of tidal straining. J. Phys. Oceanogr., 31 , 24582471.

    • Search Google Scholar
    • Export Citation
  • Rolinski, S., 1999: On the dynamics of suspended matter transport in the tidal river Elbe: Description and results of a Lagrangian model. J. Geophys. Res., 104 , 2604326058.

    • Search Google Scholar
    • Export Citation
  • Schneggenburger, C., , H. Günther, , and W. Rosenthal, 2000: Spectral wave modelling with non-linear dissipation: Validation and applications in a coastal tidal environment. Coastal Eng., 41 , 201235.

    • Search Google Scholar
    • Export Citation
  • Sharples, J., , and J. H. Simpson, 1995: Semi-diurnal and longer period stability cycles in the Liverpool Bay region of freshwater influence. Cont. Shelf Res., 15 , 295313.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., , J. Brown, , J. Matthews, , and G. Allen, 1990: Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries, 13 , 125132.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., , H. Burchard, , N. R. Fisher, , and T. P. Rippeth, 2002: The semi-diurnal cycle of dissipation in a ROFI: Model-measurement comparisons. Cont. Shelf Res., 22 , 16151628.

    • Search Google Scholar
    • Export Citation
  • Stanev, E. V., , G. Flöser, , and J-O. Wolff, 2003a: Dynamical control on water exchanges between tidal basins and the open sea. A case study for the East Frisian Wadden Sea. Ocean Dyn., 53 , 146165.

    • Search Google Scholar
    • Export Citation
  • Stanev, E. V., , J-O. Wolff, , H. Burchard, , K. Bolding, , and G. Flöser, 2003b: On the circulation in the East Frisian Wadden Sea: Numerical modeling and data analysis. Ocean Dyn., 53 , 2751.

    • Search Google Scholar
    • Export Citation
  • Stanev, E. V., , B. W. Flemming, , A. Bartholomä, , J. V. Staneva, , and J-O. Wolff, 2007: Vertical circulation in shallow tidal inlets and back-barrier basins. Cont. Shelf Res., 27 , 798831.

    • Search Google Scholar
    • Export Citation
  • Stips, A., , K. Bolding, , H. Burchard, , and W. Eifler, 2002: Modelling of convective turbulence with a two-equation k-ε turbulence closure scheme. Ocean Dyn., 52 , 153168.

    • Search Google Scholar
    • Export Citation
  • Stips, A., , K. Bolding, , H. Burchard, , and T. Pohlmann, 2004: Simulating the temporal and spatial dynamics of the North Sea using the new model GETM (General Estuarine Transport Model). Ocean Dyn., 54 , 266283.

    • Search Google Scholar
    • Export Citation
  • Stips, A., , K. Bolding, , H. Burchard, , H. Prandke, , and A. Wüest, 2005: Measurement and simulation of viscous dissipation rates in the wave affected surface layer. Deep-Sea Res. II, 52 , 11331155.

    • Search Google Scholar
    • Export Citation
  • Townend, I., , and P. Whitehead, 2003: A preliminary net sediment budget for the Humber Estuary. Sci. Total Environ., 314–316 , 755767.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., , and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61 , 235265.

  • Umlauf, L., , and U. Lemmin, 2005: Inter-basin exchange and mixing in the hypolimnion of a large lake: The role of long internal waves. Limnol. Oceanogr., 50 , 16011611.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., , H. Burchard, , and K. Bolding, 2005: General Ocean Turbulence Model. Source code documentation, Tech. Rep. 63, Baltic Sea Research Institute Warnemünde, Warnemünde, Germany, 346 pp.

  • Van Beusekom, J., , H. Fock, , F. de Jong, , S. Diel-Christiansen, , and B. Christiansen, 2001: Wadden Sea specific eutrophication criteria. Wadden Sea Ecosystem Tech. Rep. 14, Common Wadden Sea Secretariat, Wilhelmshaven, Germany, 116 pp.

  • Van Straaten, L., , and P. Kuenen, 1958: Tidal action as a cause of clay accumulation. J. Sediment. Res., 28 , 406413.

  • Villarreal, M. R., , K. Bolding, , H. Burchard, , and E. Demirov, 2005: Coupling of the GOTM turbulence module to some three-dimensional ocean models. Marine Turbulence: Theories, Observations and Models, H. Z. Baumert, J. Simpson, and J. Sündermann, Eds., Cambridge University Press, 225–237.

    • Search Google Scholar
    • Export Citation
  • Zimmerman, J. T. F., 1976: Mixing and flushing of tidal embayments in the western Dutch Wadden Sea. Part I: Distribution of salinity and calculation of mixing time scales. Neth. J. Sea Res., 10 , 149191.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 178 178 84
PDF Downloads 94 94 12

Impact of Density Gradients on Net Sediment Transport into the Wadden Sea

View More View Less
  • 1 Baltic Sea Research Institute Warnemünde, Rostock, Germany
  • | 2 GKSS Research Centre, Geesthacht, Germany
  • | 3 Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
  • | 4 Institute of Physics, Carl von Ossietzky University, Oldenburg, Germany
  • | 5 GKSS Research Centre, Geesthacht, Germany
© Get Permissions
Restricted access

Abstract

This study tests the hypothesis that horizontal density gradients have the potential to significantly contribute to the accumulation of suspended particulate matter (SPM) in the Wadden Sea. It is shown by means of long-term observations at various positions in the Wadden Sea of the German Bight that the water in the inner regions of the Wadden Sea is typically about 0.5–1.0 kg m−3 less dense than the North Sea water. During winter this occurs mostly because of freshwater runoff and net precipitation; during summer it occurs mostly because of differential heating. It is demonstrated with idealized one-dimensional water column model simulations that the interaction of such small horizontal density gradients with tidal currents generates net onshore SPM fluxes. Major mechanisms for this are tidal straining, estuarine circulation, and tidal mixing asymmetries. Three-dimensional model simulations in a semienclosed Wadden Sea embayment with periodic tidal forcing show that SPM with sufficiently high settling velocity (ws = 10−3 m s−1) is accumulating in the Wadden Sea Bight because of density gradients. This is proven through a comparative model simulation in which the dynamic effects of the density gradients are switched off, with the consequence of no SPM accumulation. These numerical model results motivate future targeted field studies in different Wadden Sea regions with the aim to further support the hypothesis.

Corresponding author address: Hans Burchard, Baltic Sea Research Institute Warnemünde, Seestraße 15, D-18119 Rostock, Germany. Email: hans.burchard@io-warnemuende.de

Abstract

This study tests the hypothesis that horizontal density gradients have the potential to significantly contribute to the accumulation of suspended particulate matter (SPM) in the Wadden Sea. It is shown by means of long-term observations at various positions in the Wadden Sea of the German Bight that the water in the inner regions of the Wadden Sea is typically about 0.5–1.0 kg m−3 less dense than the North Sea water. During winter this occurs mostly because of freshwater runoff and net precipitation; during summer it occurs mostly because of differential heating. It is demonstrated with idealized one-dimensional water column model simulations that the interaction of such small horizontal density gradients with tidal currents generates net onshore SPM fluxes. Major mechanisms for this are tidal straining, estuarine circulation, and tidal mixing asymmetries. Three-dimensional model simulations in a semienclosed Wadden Sea embayment with periodic tidal forcing show that SPM with sufficiently high settling velocity (ws = 10−3 m s−1) is accumulating in the Wadden Sea Bight because of density gradients. This is proven through a comparative model simulation in which the dynamic effects of the density gradients are switched off, with the consequence of no SPM accumulation. These numerical model results motivate future targeted field studies in different Wadden Sea regions with the aim to further support the hypothesis.

Corresponding author address: Hans Burchard, Baltic Sea Research Institute Warnemünde, Seestraße 15, D-18119 Rostock, Germany. Email: hans.burchard@io-warnemuende.de

Save