• Camassa, R., , W. Choi, , H. Michallet, , P-O. Rusås, , and J. Sveen, 2006: On the realm of validity of strongly nonlinear asymptotic approximations for internal waves. J. Fluid Mech., 549 , 123.

    • Search Google Scholar
    • Export Citation
  • Choi, W., , and R. Camassa, 1999: Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech., 396 , 136.

  • Gerkema, T., 1996: A unified model for the generation and fission of internal tides in a rotating ocean. J. Mar. Res., 54 , 421450.

  • Gerkema, T., 2001: Internal and interfacial tides: Beam scattering and local generation of solitary waves. J. Mar. Res., 59 , 227255.

  • Gerkema, T., , and J. T. F. Zimmerman, 1995: Generation of nonlinear internal tides and solitary waves. J. Phys. Oceanogr., 25 , 10811094.

    • Search Google Scholar
    • Export Citation
  • Gilman, O. A., , R. Grimshaw, , and Y. A. Stepanyants, 1995: Approximate analytical and numerical solutions of the stationary Ostrovsky equation. Stud. Appl. Math., 95 , 115126.

    • Search Google Scholar
    • Export Citation
  • Gilman, O. A., , R. Grimshaw, , and Y. A. Stepanyants, 1996: Dynamics of internal solitary waves in a rotating fluid. Dyn. Atmos. Oceans, 23 , 403411.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R. H. J., , and N. Smyth, 1986: Resonant flow of a stratified fluid over topography. J. Fluid Mech., 169 , 429464.

  • Grimshaw, R. H. J., , J-M. He, , and L. Ostrovsky, 1998a: Terminal damping of a solitary wave due to radiation in rotational systems. Stud. Appl. Math., 101 , 197210.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R. H. J., , L. Ostrovsky, , V. I. Shrira, , and Y. A. Stepanyants, 1998b: Long nonlinear surface and internal gravity waves in a rotating ocean. Surv. Geophys., 19 , 289338.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R. H. J., , E. Pelinovsky, , Y. Stepanyants, , and T. Talipova, 2006: Modelling internal solitary waves on the Australian North West Shelf. Mar. Freshwater Res., 57 , 265272.

    • Search Google Scholar
    • Export Citation
  • Hammack, J. L., , and H. Segur, 1978: Modelling criteria for long water waves. J. Fluid Mech., 84 , 359373.

  • Helfrich, K. R., 2007: Decay and return of internal solitary waves with rotation. Phys. Fluids, 19 .026 601, doi:10.1063/1.2472509.

  • Helfrich, K. R., , and W. K. Melville, 2006: Long nonlinear internal waves. Annu. Rev. Fluid Mech., 38 , 395425.

  • Holloway, P. E., , E. Pelinovsky, , and T. Talipova, 1999: A generalized Korteweg–de Vries model of internal tide transformation in the coastal zone. J. Geophys. Res., 104 , 1833318350.

    • Search Google Scholar
    • Export Citation
  • Jiang, G-S., , and E. Tadmor, 1998: Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput., 19 , 18921917.

    • Search Google Scholar
    • Export Citation
  • Jo, T-C., , and W. Choi, 2002: Dynamics of strongly nonlinear internal solitary waves in shallow water. Stud. Appl. Math., 109 , 205227.

    • Search Google Scholar
    • Export Citation
  • Kakutani, T., , and N. Yamasaki, 1978: Solitary waves on a two-layer fluid. J. Phys. Soc. Japan, 45 , 674679.

  • Lamb, K., 1994: Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge. J. Geophys. Res., 99 , 843864.

    • Search Google Scholar
    • Export Citation
  • Lee, C-Y., , and R. C. Beardsley, 1974: The generation of long nonlinear internal waves in a weakly stratified shear flow. J. Geophys. Res., 79 , 453462.

    • Search Google Scholar
    • Export Citation
  • Leonov, A. I., 1981: The effect of the earth’s rotation on the propagation of weak nonlinear surface and internal long oceanic waves. Ann. NY Acad. Sci., 373 , 150159.

    • Search Google Scholar
    • Export Citation
  • Lien, R-C., , T. Y. Tang, , M. H. Chang, , and E. A. D’Asaro, 2005: Energy of nonlinear internal waves in the South China Sea. Geophys. Res. Lett., 32 .L05615, doi:10.1029/2004GL022012.

    • Search Google Scholar
    • Export Citation
  • Maxworthy, T., 1979: A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res., 84 , 338346.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., , and K. Helfrich, 1987: Transcritical two-layer flow over topography. J. Fluid Mech., 178 , 3152.

  • Melville, W. K., , G. G. Tomasson, , and D. P. Renouard, 1989: On the stability of Kelvin waves. J. Fluid Mech., 206 , 123.

  • Michallet, H., , and E. Barthélemy, 1998: Experimental study of interfacial solitary waves. J. Fluid Mech., 366 , 159177.

  • Miyata, M., 1985: Long internal waves of large amplitude. La Mer, 23 , 4348.

  • Miyata, M., 1988: Long internal waves of large amplitude. Nonlinear Water Waves, K. Horikawa and H. Maruo, Eds., Springer-Verlag, 399–406.

    • Search Google Scholar
    • Export Citation
  • New, A. L., , and M. Estaban, 1999: A new Korteweg–de Vries-type theory for internal solitary waves in a rotating continuously-stratified ocean. Ocean Subsurface Layer: Physical Processes and Remote Sensing, E. N. Pelinovsky and V. I. Talanov, Eds., Applied Physics Institute Press, 173–203.

    • Search Google Scholar
    • Export Citation
  • Ostrovsky, L., 1978: Nonlinear internal waves in a rotating ocean. Oceanology, 18 , 119125.

  • Ostrovsky, L., , and J. Grue, 2003: Evolution equations for strongly nonlinear internal waves. Phys. Fluids, 15 , 29342948.

  • Plougonven, R., , and V. Zeitlin, 2003: On periodic inertia-gravity waves of finite amplitude propagating without change of form at sharp density-gradient interfaces in the rotating fluid. Phys. Lett. A, 314 , 140149.

    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., and Coauthors, 2004: Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation. IEEE J. Oceanic Eng., 29 , 11571181.

    • Search Google Scholar
    • Export Citation
  • Shrira, V. I., 1986: On long strongly nonlinear waves in a rotating ocean. Izv. Atmos. Oceanic Phys., 22 , 298305.

  • Stanton, T. P., , and L. A. Ostrovsky, 1998: Observations of highly nonlinear internal solitons over the continental shelf. Geophys. Res. Lett., 25 , 26952698.

    • Search Google Scholar
    • Export Citation
  • Tomasson, G. G., , and W. K. Melville, 1992: Geostrophic adjustment in a channel: Nonlinear and dispersive effects. J. Fluid Mech., 241 , 2357.

    • Search Google Scholar
    • Export Citation
  • Wei, G., , J. T. Kirby, , S. T. Grilli, , and R. Subramanya, 1995: A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech., 294 , 7192.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., , and M. H. Alford, 2006: Source and propagation of internal solitary waves in the northeastern South China Sea. J. Geophys. Res., 111 .C11012, doi:10.1029/2006JC003644.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., , V. Klemas, , Q. Zheng, , and X-H. Yan, 2004: Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Lett., 31 .L06302, doi:10.1029/2003GL019077.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 59 59 7
PDF Downloads 61 61 4

Nonlinear Disintegration of the Internal Tide

View More View Less
  • 1 Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 Department of Mathematical Sciences, Loughborough University, Loughborough, Leicester, United Kingdom
© Get Permissions
Restricted access

Abstract

The disintegration of a first-mode internal tide into shorter solitary-like waves is considered. Since observations frequently show both tides and waves with amplitudes beyond the restrictions of weakly nonlinear theory, the evolution is studied using a fully nonlinear, weakly nonhydrostatic two-layer theory that includes rotation. In the hydrostatic limit, the governing equations have periodic, nonlinear inertia–gravity solutions that are explored as models of the nonlinear internal tide. These long waves are shown to be robust to weak nonhydrostatic effects. Numerical solutions show that the disintegration of an initial sinusoidal linear internal tide is closely linked to the presence of these nonlinear waves. The initial tide steepens due to nonlinearity and sheds energy into short solitary waves. The disintegration is halted as the longwave part of the solution settles onto a state close to one of the nonlinear hydrostatic solutions, with the short solitary waves superimposed. The degree of disintegration is a function of initial amplitude of the tide and the properties of the underlying nonlinear hydrostatic solutions, which, depending on stratification and tidal frequency, exist only for a finite range of amplitudes (or energies). There is a lower threshold below which no short solitary waves are produced. However, for initial amplitudes above another threshold, given approximately by the energy of the limiting nonlinear hydrostatic inertia–gravity wave, most of the initial tidal energy goes into solitary waves. Recent observations in the South China Sea are briefly discussed.

Corresponding author address: Karl R. Helfrich, Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: khelfrich@whoi.edu

Abstract

The disintegration of a first-mode internal tide into shorter solitary-like waves is considered. Since observations frequently show both tides and waves with amplitudes beyond the restrictions of weakly nonlinear theory, the evolution is studied using a fully nonlinear, weakly nonhydrostatic two-layer theory that includes rotation. In the hydrostatic limit, the governing equations have periodic, nonlinear inertia–gravity solutions that are explored as models of the nonlinear internal tide. These long waves are shown to be robust to weak nonhydrostatic effects. Numerical solutions show that the disintegration of an initial sinusoidal linear internal tide is closely linked to the presence of these nonlinear waves. The initial tide steepens due to nonlinearity and sheds energy into short solitary waves. The disintegration is halted as the longwave part of the solution settles onto a state close to one of the nonlinear hydrostatic solutions, with the short solitary waves superimposed. The degree of disintegration is a function of initial amplitude of the tide and the properties of the underlying nonlinear hydrostatic solutions, which, depending on stratification and tidal frequency, exist only for a finite range of amplitudes (or energies). There is a lower threshold below which no short solitary waves are produced. However, for initial amplitudes above another threshold, given approximately by the energy of the limiting nonlinear hydrostatic inertia–gravity wave, most of the initial tidal energy goes into solitary waves. Recent observations in the South China Sea are briefly discussed.

Corresponding author address: Karl R. Helfrich, Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: khelfrich@whoi.edu

Save