How Does Labrador Sea Water Enter the Deep Western Boundary Current?

Jaime B. Palter Division of Earth and Ocean Science, Nicholas School of the Environment and Earth Science, Duke University, Durham, North Carolina

Search for other papers by Jaime B. Palter in
Current site
Google Scholar
PubMed
Close
,
M. Susan Lozier Division of Earth and Ocean Science, Nicholas School of the Environment and Earth Science, Duke University, Durham, North Carolina

Search for other papers by M. Susan Lozier in
Current site
Google Scholar
PubMed
Close
, and
Kara L. Lavender Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Kara L. Lavender in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Labrador Sea Water (LSW), a dense water mass formed by convection in the subpolar North Atlantic, is an important constituent of the meridional overturning circulation. Understanding how the water mass enters the deep western boundary current (DWBC), one of the primary pathways by which it exits the subpolar gyre, can shed light on the continuity between climate conditions in the formation region and their downstream signal. Using the trajectories of (profiling) autonomous Lagrangian circulation explorer [(P)ALACE] floats, operating between 1996 and 2002, three processes are evaluated for their role in the entry of Labrador Sea Water in the DWBC: 1) LSW is formed directly in the DWBC, 2) eddies flux LSW laterally from the interior Labrador Sea to the DWBC, and 3) a horizontally divergent mean flow advects LSW from the interior to the DWBC. A comparison of the heat flux associated with each of these three mechanisms suggests that all three contribute to the transformation of the boundary current as it transits the Labrador Sea. The formation of LSW directly in the DWBC and the eddy heat flux between the interior Labrador Sea and the DWBC may play leading roles in setting the interannual variability of the exported water mass.

Corresponding author address: Jaime Palter, Centro Mediterraneo de Investigaciones Marinas y Ambientales (CSIC), Passeig Maritimo de la Barceloneta, 37-49, 08003 Barcelona, Spain. Email: palter@icm.csic.es

Abstract

Labrador Sea Water (LSW), a dense water mass formed by convection in the subpolar North Atlantic, is an important constituent of the meridional overturning circulation. Understanding how the water mass enters the deep western boundary current (DWBC), one of the primary pathways by which it exits the subpolar gyre, can shed light on the continuity between climate conditions in the formation region and their downstream signal. Using the trajectories of (profiling) autonomous Lagrangian circulation explorer [(P)ALACE] floats, operating between 1996 and 2002, three processes are evaluated for their role in the entry of Labrador Sea Water in the DWBC: 1) LSW is formed directly in the DWBC, 2) eddies flux LSW laterally from the interior Labrador Sea to the DWBC, and 3) a horizontally divergent mean flow advects LSW from the interior to the DWBC. A comparison of the heat flux associated with each of these three mechanisms suggests that all three contribute to the transformation of the boundary current as it transits the Labrador Sea. The formation of LSW directly in the DWBC and the eddy heat flux between the interior Labrador Sea and the DWBC may play leading roles in setting the interannual variability of the exported water mass.

Corresponding author address: Jaime Palter, Centro Mediterraneo de Investigaciones Marinas y Ambientales (CSIC), Passeig Maritimo de la Barceloneta, 37-49, 08003 Barcelona, Spain. Email: palter@icm.csic.es

Save
  • Bower, A. S., and H. D. Hunt, 2000: Lagrangian observations of the deep western boundary current in the North Atlantic Ocean. Part II: The Gulf Stream–deep western boundary current crossover. J. Phys. Oceanogr., 30 , 784–804.

    • Search Google Scholar
    • Export Citation
  • Curry, R. G., M. S. McCartney, and T. M. Joyce, 1998: Oceanic transport of subpolar climate signals to mid-depth subtropical waters. Nature, 391 , 575–577.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., J. T. Sherman, and J. Dufour, 2001: Profiling ALACEs and other advances in autonomous subsurface floats. J. Atmos. Oceanic Technol., 18 , 982–993.

    • Search Google Scholar
    • Export Citation
  • Dengler, M., J. Fischer, F. A. Schott, and R. Zantopp, 2006: Deep Labrador Current and its variability in 1996–2005. Geophys. Res. Lett., 33 .L21S06, doi:10.1029/2006GL026702.

    • Search Google Scholar
    • Export Citation
  • Dickson, R., J. Lazier, J. Meincke, P. Rhines, and J. Swift, 1996: Long-term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr., 38 , 241–295.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and F. A. Schott, 2002: Labrador Sea Water tracked by profiling floats—From the boundary current into the open North Atlantic. J. Phys. Oceanogr., 32 , 573–584.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., F. A. Schott, and M. Dengler, 2004: Boundary circulation at the exit of the Labrador Sea. J. Phys. Oceanogr., 34 , 1548–1570.

    • Search Google Scholar
    • Export Citation
  • Fratantoni, D. M., 2001: North Atlantic surface circulation during the 1990’s observed with satellite-tracked drifters. J. Geophys. Res., 106 , 22067–22093.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437–471.

  • Katsman, C. A., M. A. Spall, and R. S. Pickart, 2004: Boundary current eddies and their role in the restratification of the Labrador Sea. J. Phys. Oceanogr., 34 , 1967–1983.

    • Search Google Scholar
    • Export Citation
  • Kieke, D., M. Rhein, L. Stramma, W. M. Smethie, D. A. LeBel, and W. Zenk, 2006: Changes in the CFC inventories and formation rates of upper Labrador Sea Water, 1997–2001. J. Phys. Oceanogr., 36 , 64–86.

    • Search Google Scholar
    • Export Citation
  • Lab Sea Group, The, 1998: The Labrador Sea Deep Convection Experiment. Bull. Amer. Meteor. Soc., 79 , 2033–2058.

  • Lavender, K. L., R. E. Davis, and W. B. Owens, 2000: Mid-depth recirculation observed in the interior Labrador and Irminger seas by direct velocity measurements. Nature, 407 , 66–69.

    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., R. E. Davis, and W. B. Owens, 2002: Observations of open-ocean deep convection in the Labrador Sea from subsurface floats. J. Phys. Oceanogr., 32 , 511–526.

    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., W. B. Owens, and R. E. Davis, 2005: The mid-depth circulation of the subpolar North Atlantic Ocean as measured by subsurface floats. Deep-Sea Res. I, 52 , 767–785.

    • Search Google Scholar
    • Export Citation
  • Lazier, J., and D. G. Wright, 1993: Annual velocity variations in the Labrador Current. J. Phys. Oceanogr., 23 , 659–678.

  • Lazier, J., R. Hendry, A. Clarke, I. Yashayaev, and P. Rhines, 2002: Convection and restratification in the Labrador Sea, 1990–2000. Deep-Sea Res. I, 49 , 1819–1835.

    • Search Google Scholar
    • Export Citation
  • Pazan, S. E., and P. Niiler, 2004: New global drifter data set available. EOS, Trans. Amer. Geophys. Union, 85 , 17.

  • Pickart, R. S., and W. M. Smethie, 1998: Temporal evolution of the deep western boundary current where it enters the sub-tropical domain: Evidence from tracer data. Deep-Sea Res. I, 45 , 1053–1083.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and M. A. Spall, 2007: Impact of the Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37 , 2207–2227.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., W. M. J. Smethie, J. R. N. Lazier, E. P. Jones, and W. J. Jenkins, 1996: Eddies of newly formed upper Labrador Sea Water. J. Geophys. Res., 101 , 20711–20726.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, and J. R. N. Lazier, 1997: Mid-depth ventilation in the western boundary current system of the sub-polar gyre. Deep-Sea Res. I, 44 , 1025–1054.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. J. Torres, and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32 , 428–457.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, M. H. Ribergaard, G. W. K. Moore, and R. F. Milliff, 2003a: Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424 , 152–156.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., F. Straneo, and G. W. K. Moore, 2003b: Is Labrador Sea Water formed in the Irminger Basin? Deep-Sea Res. I, 50 , 23–52.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., G. W. K. Moore, P. S. Guest, and K. Bumke, 2002: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32 , 383–400.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2002: Labrador Sea Water: Pathways, CFC inventory, and formation rates. J. Phys. Oceanogr., 32 , 648–665.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., J. Fischer, M. Dengler, and R. Zantopp, 2006: Variability of the Deep Western Boundary Current east of the Grand Banks. Geophys. Res. Lett., 33 .L21S07, doi:10.1029/2006GL026563.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., D. Kieke, M. Rhein, F. Schott, I. Yashayaev, and K. P. Koltermann, 2004: Deep water changes at the western boundary of the subpolar North Atlantic during 1996 to 2001. Deep-Sea Res. I, 51 , 1033–1056.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006a: Heat and freshwater transport through the Central Labrador Sea. J. Phys. Oceanogr., 36 , 606–628.

  • Straneo, F., 2006b: On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. J. Phys. Oceanogr., 36 , 1822–1840.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., R. S. Pickart, and K. L. Lavender, 2003: Spreading of Labrador Sea Water: An advective–diffusive study based on Lagrangian data. Deep-Sea Res. I, 50 , 701–719.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., and M. S. McCartney, 1982: Distribution and circulation of Labrador Sea Water. J. Phys. Oceanogr., 12 , 1189–1205.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 296 103 8
PDF Downloads 200 68 5