Variability of Intraseasonal Kelvin Waves in the Equatorial Pacific Ocean

Toshiaki Shinoda NOAA/Earth System Research Laboratory, and CIRES Climate Diagnostics Center, Boulder, Colorado

Search for other papers by Toshiaki Shinoda in
Current site
Google Scholar
PubMed
Close
,
Paul E. Roundy Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Paul E. Roundy in
Current site
Google Scholar
PubMed
Close
, and
George N. Kiladis NOAA/Earth System Research Laboratory, and CIRES Climate Diagnostics Center, Boulder, Colorado

Search for other papers by George N. Kiladis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous observational work has demonstrated that the phase speed of oceanic equatorial Kelvin waves forced by the Madden–Julian oscillation (MJO) appears to vary substantially. Processes that are responsible for systematic changes in the phase speed of these waves are examined using an ocean general circulation model. The model was integrated for 26 yr with daily wind stress derived from the NCEP–NCAR reanalysis. The model is able to reproduce observed systematic changes of Kelvin wave phase speed reasonably well, providing a tool for the analysis of their dynamics.

The relative importance of the upper ocean background state and atmospheric forcing for phase speed changes is determined based on a series of model experiments with various surface forcings. Systematic changes in phase speed are evident in all model experiments that have different slowly varying basic states, showing that variations of the upper ocean background state are not the primary cause of the changes. The model experiments that include and exclude intraseasonal components of wind stress in the eastern Pacific demonstrate that wind stress changes to the east of the date line can significantly alter the speed of Kelvin waves initially generated over the western Pacific, which often results in a phase propagation faster than the free wave speed. These faster waves contribute to the systematic changes of phase speed evident in observations. Similar results are also obtained using a linear stratified model, eliminating nonlinearity as a possible cause of the phase speed changes.

* Current affiliation: Naval Research Laboratory, Stennis Space Center, Mississippi

Corresponding author address: Toshiaki Shinoda, Naval Research Laboratory, Stennis Space Center, MS 39529. Email: toshiaki.shinoda@nrlssc.navy.mil

Abstract

Previous observational work has demonstrated that the phase speed of oceanic equatorial Kelvin waves forced by the Madden–Julian oscillation (MJO) appears to vary substantially. Processes that are responsible for systematic changes in the phase speed of these waves are examined using an ocean general circulation model. The model was integrated for 26 yr with daily wind stress derived from the NCEP–NCAR reanalysis. The model is able to reproduce observed systematic changes of Kelvin wave phase speed reasonably well, providing a tool for the analysis of their dynamics.

The relative importance of the upper ocean background state and atmospheric forcing for phase speed changes is determined based on a series of model experiments with various surface forcings. Systematic changes in phase speed are evident in all model experiments that have different slowly varying basic states, showing that variations of the upper ocean background state are not the primary cause of the changes. The model experiments that include and exclude intraseasonal components of wind stress in the eastern Pacific demonstrate that wind stress changes to the east of the date line can significantly alter the speed of Kelvin waves initially generated over the western Pacific, which often results in a phase propagation faster than the free wave speed. These faster waves contribute to the systematic changes of phase speed evident in observations. Similar results are also obtained using a linear stratified model, eliminating nonlinearity as a possible cause of the phase speed changes.

* Current affiliation: Naval Research Laboratory, Stennis Space Center, Mississippi

Corresponding author address: Toshiaki Shinoda, Naval Research Laboratory, Stennis Space Center, MS 39529. Email: toshiaki.shinoda@nrlssc.navy.mil

Save
  • Benestad, R. E., R. T. Sutton, and D. L. T. Anderson, 2002: The effect of El Niño on intraseasonal Kelvin waves. Quart. J. Roy. Meteor. Soc., 128 , 12771291.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., H. H. Hendon, and K. M. Weickmann, 2001: Intraseasonal air–sea interactions at the onset of El Niño. J. Climate, 14 , 17021719.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4 , 5588.

  • Chassignet, E. P., L. T. Smith, G. R. Haliwell, and R. Bleck, 2003: North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr., 33 , 25042526.

    • Search Google Scholar
    • Export Citation
  • Chin, T. M., R. F. Milliff, and W. G. Large, 1998: Basin-scale, high-wavenumber sea surface wind fields from a multiresolution analysis of scatterometer data. J. Atmos. Oceanic Technol., 15 , 741763.

    • Search Google Scholar
    • Export Citation
  • Cravatte, S., J. Picaut, and G. Eldin, 2003: Second and first baroclinic Kelvin modes in the equatorial Pacific at intraseasonal time scales. J. Geophys. Res., 108 .3266, doi:10.1029/2002JC001511.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., 1987: The intraseasonal oscillation in eastern Pacific sea levels: How is it forced? J. Phys. Oceanogr., 17 , 18601876.

    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and W. K. Melville, 2000: Kelvin fronts on the equatorial thermocline. J. Phys. Oceanogr., 30 , 16921705.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Han, W., 2005: Origins and dynamics of the 90-day and 30–60-day variations in the equatorial Indian Ocean. J. Phys. Oceanogr., 35 , 708728.

    • Search Google Scholar
    • Export Citation
  • Han, W., T. J. P. McCreary, D. L. T. Anderson, and A. J. Mariano, 1999: Dynamics of the eastward surface jets in the equatorial Indian Ocean. J. Phys. Oceanogr., 29 , 21912209.

    • Search Google Scholar
    • Export Citation
  • Han, W., T. Shinoda, L-L. Fu, and J. P. McCreary, 2006: Impact of atmospheric intraseasonal oscillations on the Indian Ocean dipole. J. Phys. Oceanogr., 36 , 670690.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Hendon, H. H., B. Liebmann, and J. Glick, 1998: Oceanic Kelvin waves and the Madden–Julian oscillation. J. Atmos. Sci., 55 , 88101.

  • Jiang, C., M. F. Cronin, K. A. Kelly, and L. Thompson, 2005: Evaluation of a hybrid satellite- and NWP-based turbulent heat flux product using Tropical Atmosphere–Ocean (TAO) buoys. J. Geophys. Res., 110 .C09007, doi:10.1029/2004JC002824.

    • Search Google Scholar
    • Export Citation
  • Johnson, E. S., and M. J. McPhaden, 1993: Structure of intraseasonal Kelvin waves in the equatorial Pacific Ocean. J. Phys. Oceanogr., 23 , 608625.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kessler, W. S., and R. Kleeman, 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13 , 35603575.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., M. J. McPhaden, and K. M. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific Ocean. J. Geophys. Res., 100 , 1061310631.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11 , 324336.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: Review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M. J., P. Boulanger, C. Menkes, S. Masson, G. Madec, and P. Delecluse, 2002: Ocean response to the March 1997 westerly wind event. J. Geophys. Res., 107 .8015, doi:10.1029/2001JC000841.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Long, B., and P. Chang, 1990: Propagation of an equatorial Kelvin wave in a varying thermocline. J. Phys. Oceanogr., 20 , 18261841.

  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation: A review. Mon. Wea. Rev., 122 , 814837.

  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • McCreary, J. P., 1980: Modeling wind-driven ocean circulation. Hawaii Institute of Geophysics Tech. Rep. HIG-80-3, 64 pp.

  • McCreary, J. P., 1981: A linear stratified ocean model of the equatorial undercurrent. Philos. Trans. Roy. Soc. London, A298 , 603635.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., W. Han, D. Shanker, and S. R. Shetye, 1996: On the dynamics of the East India Coastal Current. Part 2: Numerical solutions. J. Geophys. Res., 101 , 1399314010.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1995: The Tropical Atmosphere–Ocean array is completed. Bull. Amer. Meteor. Soc., 76 , 739741.

  • McPhaden, M. J., 2002: Mixed layer temperature balance on intraseasonal timescales in the equatorial Pacific Ocean. J. Climate, 15 , 26322647.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and B. A. Taft, 1988: Dynamics of seasonal and intraseasonal variability in the eastern equatorial Pacific. J. Phys. Oceanogr., 18 , 17131732.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997–98 El Niño. Geophys. Res. Lett., 26 , 29612964.

  • Milliff, R. F., and J. Morzel, 2001: The global distribution of the time-average wind stress curl from NSCAT. J. Atmos. Sci., 58 , 109131.

    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., W. G. Large, J. Morzel, G. Danabasoglu, and T. M. Chin, 1999: Ocean general circulation model sensitivity to forcing from scatterometer winds. J. Geophys. Res., 104 , 1133711358.

    • Search Google Scholar
    • Export Citation
  • Moore, D. W., and S. G. H. Philander, 1977: Modeling of the tropical oceanic circulation. The Sea, E. D. Goldberg et al., Eds., Vol. 6, Wiley-Interscience, 319–361.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1979: Equatorial waves in the presence of the equatorial undercurrent. J. Phys. Oceanogr., 9 , 254262.

  • Ralph, E. A., K. Bi, and P. P. Niiler, 1997: A Lagrangian description of the western equatorial Pacific response to the wind burst of December 1992. J. Climate, 10 , 17061721.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and G. N. Kiladis, 2006: Observed relationships between oceanic Kelvin waves and atmospheric forcing. J. Climate, 19 , 52535272.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and G. N. Kiladis, 2007: Analysis of a reconstructed oceanic Kelvin wave dynamic height dataset for the period 1974–2005. J. Climate, 20 , 43414355.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the Tropics. J. Atmos. Sci., 51 , 22072224.

    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., M. F. Cronin, and G. N. Kiladis, 2007: Sub-seasonal variance of surface meteorological parameters in buoy observations and reanalyses. Geophys. Res. Lett., 34 .L12708, doi:10.1029/2007GL029506.

    • Search Google Scholar
    • Export Citation
  • Shaji, C., C. Wang, G. R. Halliwell Jr., and A. Wallcraft, 2005: Simulation of tropical Pacific and Atlantic Oceans using a HYbrid Coordinate Ocean Model. Ocean Modell., 9 , 253282.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., 2005: Impact of the diurnal cycle of solar radiation on intraseasonal SST variability in the western equatorial Pacific. J. Climate, 18 , 26282636.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and H. H. Hendon, 1998: Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian Oceans. J. Climate, 11 , 26682685.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and H. H. Hendon, 2001: Upper ocean heat budget in response to the Madden–Julian oscillation in the western equatorial Pacific. J. Climate, 14 , 41474165.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and J. Glick, 1998: Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J. Climate, 11 , 16851702.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and J. Glick, 1999: Intraseasonal surface fluxes in the tropical western Pacific and Indian Oceans from NCEP reanalyses. Mon. Wea. Rev., 127 , 678693.

    • Search Google Scholar
    • Export Citation
  • Spillane, M. C., D. B. Enfield, and J. S. Allen, 1987: Intraseasonal oscillations in sea level along the west coast of the Americas. J. Phys. Oceanogr., 17 , 313325.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., R. Murtugudde, and L. E. Lucas, 2003: Indo-Pacific Ocean response to atmospheric intraseasonal variability. 1. Austral summer and the Madden–Julian Oscillation. J. Geophys. Res., 108 .3160, doi:10.1029/2002JC001620.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1996: Atmospheric intraseasonal variability at the surface in the tropical western Pacific Ocean. J. Atmos. Sci., 53 , 739758.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J. Climate, 15 , 24292445.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 369 89 6
PDF Downloads 279 62 6