Dynamics of Intraseasonal Sea Level and Thermocline Variability in the Equatorial Atlantic during 2002–03

Weiqing Han Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Weiqing Han in
Current site
Google Scholar
PubMed
Close
,
Peter J. Webster School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Peter J. Webster in
Current site
Google Scholar
PubMed
Close
,
Jia-Lin Lin Department of Geography, The Ohio State University, Columbus, Ohio

Search for other papers by Jia-Lin Lin in
Current site
Google Scholar
PubMed
Close
,
W. T. Liu Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by W. T. Liu in
Current site
Google Scholar
PubMed
Close
,
Rong Fu School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Rong Fu in
Current site
Google Scholar
PubMed
Close
,
Dongliang Yuan Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Dongliang Yuan in
Current site
Google Scholar
PubMed
Close
, and
Aixue Hu National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Aixue Hu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Satellite and in situ observations in the equatorial Atlantic Ocean during 2002–03 show dominant spectral peaks at 40–60 days and secondary peaks at 10–40 days in sea level and thermocline within the intraseasonal period band (10–80 days). A detailed investigation of the dynamics of the intraseasonal variations is carried out using an ocean general circulation model, namely, the Hybrid Coordinate Ocean Model (HYCOM). Two parallel experiments are performed in the tropical Atlantic Ocean basin for the period 2000–03: one is forced by daily scatterometer winds from the Quick Scatterometer (QuikSCAT) satellite together with other forcing fields, and the other is forced by the low-passed 80-day version of the above fields. To help in understanding the role played by the wind-driven equatorial waves, a linear continuously stratified ocean model is also used.

Within 3°S–3°N of the equatorial region, the strong 40–60-day sea surface height anomaly (SSHA) and thermocline variability result mainly from the first and second baroclinic modes equatorial Kelvin waves that are forced by intraseasonal zonal winds, with the second baroclinic mode playing a more important role. Sharp 40–50-day peaks of zonal and meridional winds appear in both the QuikSCAT and Pilot Research Moored Array in the Tropical Atlantic (PIRATA) data for the period 2002–03, and they are especially strong in 2002. Zonal wind anomaly in the central-western equatorial basin for the period 2000–06 is significantly correlated with SSHA across the equatorial basin, with simultaneous/lag correlation ranging from −0.62 to 0.74 above 95% significance. Away from the equator (3°–5°N), however, sea level and thermocline variations in the 40–60-day band are caused largely by tropical instability waves (TIWs).

On 10–40-day time scales and west of 10°W, the spectral power of sea level and thermocline appears to be dominated by TIWs within 5°S–5°N of the equatorial region. The wind-driven circulation, however, also provides a significant contribution. Interestingly, east of 10°W, SSHA and thermocline variations at 10–40-day periods result almost entirely from wind-driven equatorial waves. During the boreal spring of 2002 when TIWs are weak, Kelvin waves dominate the SSHA across the equatorial basin (2°S–2°N). The observed quasi-biweekly Yanai waves are excited mainly by the quasi-biweekly meridional winds, and they contribute significantly to the SSHA and thermocline variations in 1°–5°N and 1°–5°S regions.

Corresponding author address: Weiqing Han, Dept. of Atmospheric and Oceanic Sciences, University of Colorado, UCB 311, Boulder, CO 80309. Email: whan@enso.colorado.edu

Abstract

Satellite and in situ observations in the equatorial Atlantic Ocean during 2002–03 show dominant spectral peaks at 40–60 days and secondary peaks at 10–40 days in sea level and thermocline within the intraseasonal period band (10–80 days). A detailed investigation of the dynamics of the intraseasonal variations is carried out using an ocean general circulation model, namely, the Hybrid Coordinate Ocean Model (HYCOM). Two parallel experiments are performed in the tropical Atlantic Ocean basin for the period 2000–03: one is forced by daily scatterometer winds from the Quick Scatterometer (QuikSCAT) satellite together with other forcing fields, and the other is forced by the low-passed 80-day version of the above fields. To help in understanding the role played by the wind-driven equatorial waves, a linear continuously stratified ocean model is also used.

Within 3°S–3°N of the equatorial region, the strong 40–60-day sea surface height anomaly (SSHA) and thermocline variability result mainly from the first and second baroclinic modes equatorial Kelvin waves that are forced by intraseasonal zonal winds, with the second baroclinic mode playing a more important role. Sharp 40–50-day peaks of zonal and meridional winds appear in both the QuikSCAT and Pilot Research Moored Array in the Tropical Atlantic (PIRATA) data for the period 2002–03, and they are especially strong in 2002. Zonal wind anomaly in the central-western equatorial basin for the period 2000–06 is significantly correlated with SSHA across the equatorial basin, with simultaneous/lag correlation ranging from −0.62 to 0.74 above 95% significance. Away from the equator (3°–5°N), however, sea level and thermocline variations in the 40–60-day band are caused largely by tropical instability waves (TIWs).

On 10–40-day time scales and west of 10°W, the spectral power of sea level and thermocline appears to be dominated by TIWs within 5°S–5°N of the equatorial region. The wind-driven circulation, however, also provides a significant contribution. Interestingly, east of 10°W, SSHA and thermocline variations at 10–40-day periods result almost entirely from wind-driven equatorial waves. During the boreal spring of 2002 when TIWs are weak, Kelvin waves dominate the SSHA across the equatorial basin (2°S–2°N). The observed quasi-biweekly Yanai waves are excited mainly by the quasi-biweekly meridional winds, and they contribute significantly to the SSHA and thermocline variations in 1°–5°N and 1°–5°S regions.

Corresponding author address: Weiqing Han, Dept. of Atmospheric and Oceanic Sciences, University of Colorado, UCB 311, Boulder, CO 80309. Email: whan@enso.colorado.edu

Save
  • Baturin, N. G., and P. P. Niiler, 1997: Effects of instability waves in the mixed layer of the equatorial Pacific. J. Geophys. Res., 102 , 2777127793.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic- Cartesian coordinates. Ocean Modell., 4 , 5588.

  • Brandt, P., F. A. Schott, C. Provost, A. Kartavtseff, V. Hormann, B. Bourlès, and J. Fischer, 2006: Circulation in the central equatorial Atlantic: Mean and intraseasonal to seasonal variability. Geophys. Res. Lett., 33 .L07609, doi:10.1029/2005GL025498.

    • Search Google Scholar
    • Export Citation
  • Bunge, L., C. Provost, J. M. Lilly, M. D’Orgeville, A. Kartavtseff, and J-L. Melice, 2006: Variability of the horizontal velocity structure in the upper 1600 m of the water column on the equator at 10°W. J. Phys. Oceanogr., 36 , 12871304.

    • Search Google Scholar
    • Export Citation
  • Bunge, L., C. Provost, and A. Kartavtseff, 2007: Variability in horizontal current velocities in the central and eastern equatorial Atlantic in 2002. J. Geophys. Res., 112 .C02014, doi:10.1029/2006JC003704.

    • Search Google Scholar
    • Export Citation
  • Caltabiano, A. C. V., I. S. Robinson, and L. P. Pezzi, 2005: Multi-year satellite observations of instability waves in the Tropical Atlantic Ocean. Ocean Sci. Discuss., 2 , 135.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272 , 234238.

  • Chelton, D. B., F. J. Wentz, C. L. Gentemann, R. A. de Szoeke, and M. G. Schlax, 2000: Satellite microwave SST observations of transequatorial tropical instability waves. Geophys. Res. Lett., 27 , 12391242.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14 , 14791498.

    • Search Google Scholar
    • Export Citation
  • Contreras, R. L., 2002: Long-term observations of tropical instability waves. J. Phys. Oceanogr., 32 , 27152722.

  • Cox, M., 1980: Generation and propagation of 30-day waves in a numerical model of the Pacific. J. Phys. Oceanogr., 10 , 11681186.

  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105 , 1947719498.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18 , 10161022.

  • Dueing, W., and Coauthors, 1975: Meanders and long waves in the equatorial Atlantic. Nature, 257 , 280284.

  • Foltz, G. R., and M. J. McPhaden, 2004: The 30-70 day oscillations in the tropical Atlantic. Geophys. Res. Lett., 31 .L15025, doi:10.1029/2004GL020023.

    • Search Google Scholar
    • Export Citation
  • Garzoli, S. L., 1987: Forced oscillations on the Equatorial Atlantic Basin during the Seasonal Response of the Equatorial Atlantic Program (1983–1984). J. Geophys. Res., 92 , 50895100.

    • Search Google Scholar
    • Export Citation
  • Giarolla, E., P. Nobre, M. Malagutti, and L. P. Pezzi, 2005: The Atlantic Equatorial Undercurrent: PIRATA observations and simulations with GFDL Modular Ocean Model at CPTEC. Geophys. Res. Lett., 32 .L10617, doi:10.1029/2004GL022206.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., and J. A. Carton, 2001: Coupled land/atmosphere interactions in the West African Monsoon. Geophys. Res. Lett., 28 , 15031506.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., J. A. Carton, C. Provost, J. Servain, J. A. Lorenzzetti, and M. J. McPhaden, 2005: Tropical instability waves at 0°N, 23°W in the Atlantic: A case study using Pilot Research Moored Array in the Tropical Atlantic (PIRATA) mooring data. J. Geophys. Res., 110 .C08010, doi:10.1029/2005JC002941.

    • Search Google Scholar
    • Export Citation
  • Halliwell Jr., G. R., 1998: Simulation of North Atlantic decadal/multidecadal winter SST anomalies driven by basin-scale atmospheric circulation anomalies. J. Phys. Oceanogr., 28 , 521.

    • Search Google Scholar
    • Export Citation
  • Halliwell Jr., G. R., 2004: Evaluation of vertical coordinate and vertical mixing algorithms in the Hybrid-Coordinate Ocean Model (HYCOM). Ocean Modell., 7 , 285322.

    • Search Google Scholar
    • Export Citation
  • Halpern, D., R. A. Knox, and D. S. Luther, 1988: Observations of 20-day meridional current oscillations in the upper ocean along the Pacific equator. J. Phys. Oceanogr., 18 , 15141534.

    • Search Google Scholar
    • Export Citation
  • Han, W., 2005: Origins and dynamics of the 90-day and 30-60-day variations in the equatorial Indian Ocean. J. Phys. Oceanogr., 35 , 708728.

    • Search Google Scholar
    • Export Citation
  • Han, W., D. M. Lawrence, and P. J. Webster, 2001: Dynamical response of equatorial Indian Ocean to intraseasonal winds: Zonal flow. Geophys. Res. Lett., 28 , 42154218.

    • Search Google Scholar
    • Export Citation
  • Han, W., P. J. Webster, R. Lukas, P. Hacker, and A. Hu, 2004: Impact of atmospheric intraseasonal variability in the Indian Ocean: Low-frequency rectification in equatorial surface current and transport. J. Phys. Oceanogr., 34 , 13501372.

    • Search Google Scholar
    • Export Citation
  • Han, W., D. Yuan, W. T. Liu, and D. J. Halkides, 2007: Intraseasonal variability of Indian Ocean sea surface temperature during boreal winter: Madden–Julian Oscillation versus submonthly forcing and processes. J. Geophys. Res., 112 .C04001, doi:10.1029/2006JC003791.

    • Search Google Scholar
    • Export Citation
  • Hansen, D., and C. Paul, 1984: Genesis and the effect of long waves in the equatorial Pacific. J. Geophys. Res., 89 , 1043110440.

  • Hashizume, H., S-P. Xie, W. Timothy Liu, and K. Takeuchi, 2001: Local and remote atmospheric response to tropical instability waves: A global view from space. J. Geophys. Res., 106 , 1017310185.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., B. Liebmann, and J. D. Glick, 1998: Oceanic Kelvin waves and the Madden–Julian oscillation. J. Atmos. Sci., 55 , 88101.

    • Search Google Scholar
    • Export Citation
  • Houghton, R. W., and C. Colin, 1987: Wind-driven meridional eddy heat flux in the Gulf of Guinea. J. Geophys. Res., 92 , 1077710786.

  • Janicot, S., and B. Sultan, 2001: Intra-seasonal modulation of convection in the West African monsoon. Geophys. Res. Lett., 28 , 523526.

    • Search Google Scholar
    • Export Citation
  • Jerlov, N. G., 1976: Marine Optics. Elsevier, 231 pp.

  • Jochum, M., P. Malanotte-Rizzoli, and A. Busalacchi, 2004: Tropical instability waves in the Atlantic Ocean. Ocean Modell., 7 , 145163.

    • Search Google Scholar
    • Export Citation
  • Johnson, E. S., and J. A. Proehl, 2004: Tropical instability wave variability in the Pacific and its relation to large-scale currents. J. Phys. Oceanogr., 34 , 21212147.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Katz, E. J., 1987: Equatorial Kelvin waves in the Atlantic. J. Geophys. Res., 92 , 18941898.

  • Katz, E. J., 1997: Waves along the equator in the Atlantic. J. Phys. Oceanogr., 27 , 25362544.

  • Kennan, S. C., and P. J. Flament, 2000: Observations of a tropical instability vortex. J. Phys. Oceanogr., 30 , 21212147.

  • Kessler, W. S., 2005: Intraseasonal variability in the oceans. Intraseasonal Variability in the Atmosphere-Ocean System, W. K. M. Lau and D. E. Waliser, Eds., Springer, 175–212.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27 , 24182447.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Legeckis, R., 1977: Long waves in the eastern equatorial Pacific Ocean: A view from a geostationary satellite. Science, 197 , 11791181.

    • Search Google Scholar
    • Export Citation
  • Legeckis, R., and G. Reverdin, 1987: Long waves in the equatorial Atlantic Ocean during 1983. J. Geophys. Res., 92 , 28352842.

  • Liu, W. T., X. Xie, P. S. Polito, S-P. Xie, and H. Hashizume, 2000: Atmospheric manifestation of tropical instability wave observed by QuikSCAT and Tropical Rain Measuring Mission. Geophys. Res. Lett., 27 , 25452548.

    • Search Google Scholar
    • Export Citation
  • Luther, D. S., and E. S. Johnson, 1990: Eddy energetics in the upper equatrial Pacific during the Hawaii-to-Tahiti shuttle experiment. J. Phys. Oceanogr., 20 , 913944.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., D. B. Chelton, R. A. DeSzoeke, and R. M. Samelson, 2005: Tropical instability waves as a resonance between equatorial Rossby waves. J. Phys. Oceanogr., 35 , 232254.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., G. C. Johnson, and W. S. Kessler, 2007: Distinct 17- and 33-day tropical instability waves in subsurface observations. J. Phys. Oceanogr., 37 , 855872.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind of the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Malardé, J-P., C. Perigaud, P. de Mey, and J-F. Minster, 1987: Observations of long equatorial waves in the Pacific Ocean by Seasat altimetry. J. Phys. Oceanogr., 17 , 22732279.

    • Search Google Scholar
    • Export Citation
  • Masina, S., S. G. H. Philander, and A. B. G. Bush, 1999: An analysis of tropical instability waves in a numerical model of the Pacific Ocean. 2. Generation and energetics of the waves. J. Geophys. Res., 104 , 2963729662.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., H. Hase, Y. Kuroda, H. Matsuura, and K. Takeuchi, 2005: Intraseasonal variability in the upper layer currents observed in the eastern equatorial Indian Ocean. Geophys. Res. Lett., 32 .L02607, doi:10.1029/2004GL021896.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1980: Modeling wind-driven ocean circulation. Hawaii Institute of Geophysics Tech. Rep. HIG-80-3, 64 pp.

  • McCreary, J. P., 1985: Modeling equatorial ocean circulation. Annu. Rev. Fluid Mech., 17 , 359409.

  • McCreary, J. P., and Z. Yu, 1992: Equatorial dynamics in a 2.5-layer model. Prog. Oceanogr., 29 , 61132.

  • McCreary, J. P., W. Han, D. Shankar, and S. R. Shetye, 1996: Dynamics of the East India Coastal Current 2. Numerical solutions. J. Geophys. Res., 101 , 1399314010.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1996: Monthly period oscillations in the Pacific North Equatorial Countercurrent. J. Geophys. Res., 101 , 63376359.

  • Miller, L., D. R. Watts, and M. Wimbush, 1985: Oscillations of dynamic topography in the eastern equatorial Pacific. J. Phys. Oceanogr., 15 , 17591770.

    • Search Google Scholar
    • Export Citation
  • Miyama, T., J. P. McCreary, D. Sengupta, and R. Senan, 2006: Dynamics of biweekly oscillations in the equatorial Indian Ocean. J. Phys. Oceanogr., 36 , 827846.

    • Search Google Scholar
    • Export Citation
  • Musman, S., 1989: Sea height wave form in equatorial waves and its interpretation. J. Geophys. Res., 94 , 33033309.

  • Musman, S., 1992: Geosat altimeter observations of long waves in the equatorial Atlantic. J. Geophys. Res., 97 , 35733579.

  • Perigaud, C., 1990: Sea level oscillations observed with Geosat along the two shear fronts of the Pacific North Equatorial Countercurrent. J. Geophys. Res., 95 , 72397248.

    • Search Google Scholar
    • Export Citation
  • Philander, S., 1976: Instabilities of zonal equatorial currents. J. Geophys. Res., 81 , 37253735.

  • Philander, S., 1978: Instabilities of zonal equatorial currents, 2. J. Geophys. Res., 83 , 36793682.

  • Proehl, J. A., 1996: Linear stability of equatorial zonal flows. J. Phys. Oceanogr., 26 , 601621.

  • Qiao, L., and R. H. Weisberg, 1995: Tropical instability wave kinematics: Observations from the Tropical Instability Wave Experiment. J. Geophys. Res., 100 , 86778693.

    • Search Google Scholar
    • Export Citation
  • Richardson, P., and S. Philander, 1987: The seasonal variations of surface currents in the tropical Atlantic Ocean: A comparison of ship drift data with results from a general circulation model. J. Geophys. Res., 92 , 715724.

    • Search Google Scholar
    • Export Citation
  • Servain, J., A. J. Busalacchi, M. J. McPhaden, A. D. Moura, G. Reverdin, M. Vianna, and S. E. Zebiak, 1998: A Pilot Research Moored Array in the Tropical Atlantic (PIRATA). Bull. Amer. Meteor. Soc., 79 , 20192031.

    • Search Google Scholar
    • Export Citation
  • Steger, J., and J. Carton, 1991: Long waves and eddies in the tropical Atlantic Ocean: 1984–1990. J. Geophys. Res., 96 , 1516115171.

    • Search Google Scholar
    • Export Citation
  • Tang, W., and W. T. Liu, 1996: Objective interpolation of scatterometer winds. Jet Propulsion Laboratory Tech. Rep. 96-19, California Institute of Technology, 16 pp.

  • Thorncroft, C. D., and Coauthors, 2003: The JET2000 project: Aircraft observations of the African easterly jet and African easterly waves. Bull. Amer. Meteor. Soc., 84 , 337351.

    • Search Google Scholar
    • Export Citation
  • Vangriesheim, A., A. M. Treguier, and G. Andre, 2005: Biweekly current oscillations on the continental slope of the Gulf of Guinea. Deep-Sea Res. I, 52 , 21682183.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and R. Fu, 2007: The influence of Amazon rainfall on the Atlantic ITCZ through convectively coupled Kelvin waves. J. Climate, 20 , 11881201.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., 1984: Instability waves observed on the equator in the Atlantic Ocean during 1983. Geophys. Res. Lett., 11 , 753756.

  • Weisberg, R. H., and A. M. Horigan, 1981: Low-frequency variability in the equatorial Atlantic. J. Phys. Oceanogr., 11 , 913920.

  • Weisberg, R. H., and C. Colin, 1986: Equatorial Atlantic Ocean temperature and current variations during 1983 and 1984. Nature, 322 , 240243.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and T. J. Weingartner, 1988: Instability waves in the equatorial Atlantic Ocean. J. Phys. Oceanogr., 18 , 16411657.

  • Weisberg, R. H., A. M. Horigan, and C. Colin, 1979: Equatorially trapped Rossby-gravity wave propagation in the Gulf of Guinea. J. Mar. Res., 37 , 6786.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288 , 847850.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., M. Ishiwatari, H. Hashizume, and K. Takeuchi, 1998: Coupled ocean-atmospheric waves on the equatorial front. Geophys. Res. Lett., 25 , 38633866.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., J. P. McCreary, and J. Proehl, 1995: Meridional asymmetry and energetics of tropical instability waves. J. Phys. Oceanogr., 25 , 29973007.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., 2005: Role of the Kelvin and Rossby waves in the seasonal cycle of the equatorial Pacific Ocean circulation. J. Geophys. Res., 110 .C04004, doi:10.1029/2004JC002344.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., and W. Han, 2006: Roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. J. Phys. Oceanogr., 36 , 930944.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global datasets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 .D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1114 879 208
PDF Downloads 197 53 4