Parameterization of Mixed Layer Eddies. Part I: Theory and Diagnosis

Baylor Fox-Kemper Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Baylor Fox-Kemper in
Current site
Google Scholar
PubMed
Close
,
Raffaele Ferrari Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Raffaele Ferrari in
Current site
Google Scholar
PubMed
Close
, and
Robert Hallberg NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Robert Hallberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ageostrophic baroclinic instabilities develop within the surface mixed layer of the ocean at horizontal fronts and efficiently restratify the upper ocean. In this paper a parameterization for the restratification driven by finite-amplitude baroclinic instabilities of the mixed layer is proposed in terms of an overturning streamfunction that tilts isopycnals from the vertical to the horizontal. The streamfunction is proportional to the product of the horizontal density gradient, the mixed layer depth squared, and the inertial period. Hence restratification proceeds faster at strong fronts in deep mixed layers with a weak latitude dependence. In this paper the parameterization is theoretically motivated, confirmed to perform well for a wide range of mixed layer depths, rotation rates, and vertical and horizontal stratifications. It is shown to be superior to alternative extant parameterizations of baroclinic instability for the problem of mixed layer restratification. Two companion papers discuss the numerical implementation and the climate impacts of this parameterization.

* Current affiliation: Cooperative Institute for Research in the Environmental Sciences, and Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Corresponding author address: Baylor Fox-Kemper, CIRES, and Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80309. bfk@colorado.edu

Abstract

Ageostrophic baroclinic instabilities develop within the surface mixed layer of the ocean at horizontal fronts and efficiently restratify the upper ocean. In this paper a parameterization for the restratification driven by finite-amplitude baroclinic instabilities of the mixed layer is proposed in terms of an overturning streamfunction that tilts isopycnals from the vertical to the horizontal. The streamfunction is proportional to the product of the horizontal density gradient, the mixed layer depth squared, and the inertial period. Hence restratification proceeds faster at strong fronts in deep mixed layers with a weak latitude dependence. In this paper the parameterization is theoretically motivated, confirmed to perform well for a wide range of mixed layer depths, rotation rates, and vertical and horizontal stratifications. It is shown to be superior to alternative extant parameterizations of baroclinic instability for the problem of mixed layer restratification. Two companion papers discuss the numerical implementation and the climate impacts of this parameterization.

* Current affiliation: Cooperative Institute for Research in the Environmental Sciences, and Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Corresponding author address: Baylor Fox-Kemper, CIRES, and Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80309. bfk@colorado.edu

Save
  • Andrews, D. G. and M. E. McIntyre. 1978. Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axisymmetric flows in compressible atmospheres. J. Atmos. Sci. 35:175185.

    • Search Google Scholar
    • Export Citation
  • Blumen, W. 1979. On short-wave baroclinic instability. J. Atmos. Sci. 36:19251933.

  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper. 2007. Mixed layer instabilities and restratification. J. Phys. Oceanogr. 37:22282250.

  • Branscome, L. E. 1983a. The Charney baroclinic stability problem: Approximate solutions and modal structures. J. Atmos. Sci. 40:13931409.

    • Search Google Scholar
    • Export Citation
  • Branscome, L. E. 1983b. A parameterization of transient eddy heat flux on a beta-plane. J. Atmos. Sci. 40:25082521.

  • Canuto, V. M. and M. S. Dubovikov. 2005. Modeling mesoscale eddies. Ocean Modell. 8:130.

  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin. 2008. Mesoscale to submesoscale transition in the California Current system. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr. 38:2943.

    • Search Google Scholar
    • Export Citation
  • Cehelsky, P. and K. K. Tung. 1991. Nonlinear baroclinic adjustment. J. Atmos. Sci. 48:19301947.

  • Cenedese, C., J. C. Marshall, and J. A. Whitehead. 2004. A laboratory model of thermocline depth and exchange across circumpolar fronts. J. Phys. Oceanogr. 34:656667.

    • Search Google Scholar
    • Export Citation
  • Chanut, J., B. Barnier, W. Large, L. Debreu, T. Penduff, J. M. Molines, and P. Mathiot. 2008. Mesoscale eddies in the Labrador Sea and their contribution to convection and restratification. J. Phys. Oceanogr. in press.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T. 1949. Long waves and cyclone waves. Tellus 1:3352.

  • Emery, W. J. and R. E. Thomson. 2001. Data Analysis Methods in Physical Oceanography. 2nd ed. Elsevier, 638 pp.

  • Ferrari, R. and W. R. Young. 1997. On the development of thermohaline correlations as a result of nonlinear diffusive parameterizations. J. Mar. Res. 55:10691101.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R. and D. L. Rudnick. 2000. The thermohaline structure of the upper ocean. J. Geophys. Res. 105:1685716883.

  • Ferrari, R. and F. Paparella. 2003. Compensation and alignment of thermohaline gradients in the ocean mixed layer. J. Phys. Oceanogr. 33:22142223.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R. and L. Thomas. 2008. Friction, frontogenesis, and the stratification of the surface mixed layer. J. Phys. Oceanogr. in press.

    • Search Google Scholar
    • Export Citation
  • Flament, P., L. Armi, and L. Washburn. 1985. The evolving structure of an upwelling filament. J. Geophys. Res. 90:1176511778.

  • Fox-Kemper, B. and R. Ferrari. 2008. Parameterization of mixed layer eddies. Part II: Prognosis and impact. J. Phys. Oceanogr. 38:11661179.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., G. Danabasoglu, R. Ferrari, and R. W. Hallberg. 2008. Parameterizing submesoscale physics in global climate models. CLIVAR Exchanges, No. 13, International CLIVAR Project Office, Southampton, United Kingdom, 3–5.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R. and J. C. McWilliams. 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20:150155.

  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams. 1995. Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr. 25:463474.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. 1970. Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc. 96:157185.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N. and J. C. Marshall. 1998. Gravitational, symmetric and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr. 28:634658.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R. 2003. The suitability of large-scale ocean models for adapting parameterizations of boundary mixing and a description of a refined bulk mixed layer model. Near-Boundary Processes and Their Parameterization,Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 187–203.

  • Held, I. M. and T. Schneider. 1999. The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci. 56:16881697.

    • Search Google Scholar
    • Export Citation
  • Holloway, G. and S. S. Kristmannsson. 1984. Stirring and transport of tracer fields by geostrophic turbulence. J. Fluid Mech. 141:2750.

    • Search Google Scholar
    • Export Citation
  • Hosegood, P., M. C. Gregg, and M. H. Alford. 2006. Sub-mesoscale lateral density structure in the oceanic surface mixed layer. Geophys. Res. Lett. 33.L22604, doi:10.1029/2006GL026797.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J. 1976. Baroclinic waves and frontogenesis. Part I: Introduction and eady waves. Quart. J. Roy. Meteor. Soc. 102:103122.

    • Search Google Scholar
    • Export Citation
  • Houghton, R. W., D. Hebert, and M. Prater. 2006. Circulation and mixing at the New England shelfbreak front: Results of purposeful tracer experiments. Prog. Oceanogr. 70:289312.

    • Search Google Scholar
    • Export Citation
  • Howells, I. D. 1960. An approximate equation for the spectrum of a conserved scalar quantity in a turbulent fluid. J. Fluid Mech. 9:104106.

    • Search Google Scholar
    • Export Citation
  • Jones, H. and J. Marshall. 1993. Convection with rotation in a neutral ocean: A study of open-ocean deep convection. J. Phys. Oceanogr. 23:10091039.

    • Search Google Scholar
    • Export Citation
  • Jones, H. and J. Marshall. 1997. Restratification after deep convection. J. Phys. Oceanogr. 27:22762287.

  • Killworth, P. H. 2005. On the parameterization of eddy effects on mixed layers and tracer transports: A linearized eddy perspective. J. Phys. Oceanogr. 35:17171725.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B. and J. S. Turner. 1967. A one-dimensional model of the seasonal thermocline. Tellus 19:8897.

  • Lapeyre, G., P. Klein, and B. L. Hua. 2006. Oceanic restratification forced by surface frontogenesis. J. Phys. Oceanogr. 36:15771590.

    • Search Google Scholar
    • Export Citation
  • Large, W., J. McWilliams, and S. Doney. 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32:363403.

    • Search Google Scholar
    • Export Citation
  • Larichev, V. D. and I. M. Held. 1995. Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr. 25:22852297.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A. 2006. Modeling vertical motion at ocean fronts: Are nonhydrostatic effects relevant at submesoscales? Ocean Modell. 14:222240.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A. and A. Tandon. 2006. An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell. 14:241256.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., A. Adcroft, C. Hill, L. Perelman, and C. Heisey. 1997. A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102:57535766.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh. 2005. Baroclinic instability and loss of balance. J. Phys. Oceanogr. 35:15051517.

  • Munk, W., L. Armi, K. Fischer, and Z. Zachariasen. 2000. Spirals on the sea. Proc. Roy. Soc. London 456A:12171280.

  • Nakamura, N. 1988. Scale selection of baroclinic instability-Effects of stratification and nongeostrophy. J. Atmos. Sci. 45:32533268.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N. 1994. Nonlinear equilibration of two-dimensional eady waves: Simulations with viscous geostrophic momentum equations. J. Atmos. Sci. 51:10231035.

    • Search Google Scholar
    • Export Citation
  • Nakamura, N. and I. M. Held. 1989. Nonlinear equilibration of two-dimensional eady waves. J. Atmos. Sci. 46:30553064.

  • Nurser, A. J. G. and J. W. Zhang. 2000. Eddy-induced mixed layer shallowing and mixed layer/thermocline exchange. J. Geophys. Res. 105:2185121868.

    • Search Google Scholar
    • Export Citation
  • Oschlies, A. 2002. Improved representation of upper-ocean dynamics and mixed layer depths in a model of the North Atlantic on switching from eddy-permitting to eddy-resolving grid resolution. J. Phys. Oceanogr. 32:22772298.

    • Search Google Scholar
    • Export Citation
  • Ou, H. W. 1984. Geostrophic adjustment: A mechanism for frontogenesis? J. Phys. Oceanogr. 14:9941000.

  • Plumb, R. A. and R. Ferrari. 2005. Transformed Eulerian mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr. 35:165174.

    • Search Google Scholar
    • Export Citation
  • Price, J. F. 1981. Upper ocean response to a hurricane. J. Phys. Oceanogr. 11:153175.

  • Price, J. F., R. A. Weller, and R. Pinkel. 1986. Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res. 91:84118427.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G. 1937. On the mutual adjustment of pressure and velocity distributions in certain simple current systems. I. J. Mar. Res. 1:1528.

    • Search Google Scholar
    • Export Citation
  • Rossby, C. G. 1938. On the mutual adjustment of pressure and velocity distributions in certain simple current systems. II. J. Mar. Res. 2:239263.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L. and R. Ferrari. 1999. Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science 283:526529.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L. and J. P. Martin. 2002. On the horizontal density ratio in the upper ocean. Dyn. Atmos. Oceans 36:321.

  • Salmon, R. 1998. Lectures on Geophysical Fluid Dynamics. Oxford University Press, 378 pp.

  • Samelson, R. M. and D. C. Chapman. 1995. Evolution of the instability of a mixed-layer front. J. Geophys. Res. 100:67436759.

  • Schneider, T. and C. C. Walker. 2006. Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy–eddy interactions. J. Atmos. Sci. 63:15691586.

    • Search Google Scholar
    • Export Citation
  • Spall, M. 1997. Baroclinic jets in confluent flow. J. Phys. Oceanogr. 27:381402.

  • Spall, M. 2000. Generation of strong mesoscale eddies by weak ocean gyres. J. Mar. Res. 58:97116.

  • Stone, P. H. 1966. On non-geostrophic baroclinic stability. J. Atmos. Sci. 23:390400.

  • Stone, P. H. 1970. On non-geostrophic baroclinic stability: Part II. J. Atmos. Sci. 27:721726.

  • Stone, P. H. 1972a. On non-geostrophic baroclinic stability: Part III. The momentum and heat transports. J. Atmos. Sci. 29:419426.

  • Stone, P. H. 1972b. A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci. 29:405418.

    • Search Google Scholar
    • Export Citation
  • Tandon, A. and C. Garrett. 1994. Mixed layer restratification due to a horizontal density gradient. J. Phys. Oceanogr. 24:14191424.

  • Tandon, A. and C. Garrett. 1995. Geostrophic adjustment and restratification of a mixed layer with horizontal gradients above a stratified layer. J. Phys. Oceanogr. 25:22292241.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N. 2005. Destruction of potential vorticity by winds. J. Phys. Oceanogr. 35:24572466.

  • Visbeck, M., J. C. Marshall, T. Haine, and M. Spall. 1997. Specification of eddy transfer coefficients in coarse resolution ocean circulation models. J. Phys. Oceanogr. 27:381402.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A. 1991. Overview of the Frontal Air-Sea Interaction Experiment (FASINEX): A study of air-sea interaction in a region of strong oceanic gradients. J. Geophys. Res. 96:85018516.

    • Search Google Scholar
    • Export Citation
  • Young, W. R. 1994. The subinertial mixed layer approximation. J. Phys. Oceanogr. 24:18121826.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3840 1436 124
PDF Downloads 2691 1018 91