A Model for Air–Sea Interaction Bulk Coefficient over a Warm Mature Sea under Strong Wind

Naoto Kihara Civil Engineering Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Abiko-shi, Chiba, Japan

Search for other papers by Naoto Kihara in
Current site
Google Scholar
PubMed
Close
and
Hiromaru Hirakuchi Civil Engineering Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Abiko-shi, Chiba, Japan

Search for other papers by Hiromaru Hirakuchi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A boundary layer model for evaluating sensible and latent heat fluxes over a mature sea accounting for sea spray effects at wind speeds of up to 28 m s−1 is presented. Heat exchange across the ocean surface controls the development of tropical cyclones, and Emanuel’s theory suggests that the ratio of the exchange coefficient of total enthalpy to the drag coefficient should be greater than 0.75 to maintain the intensity of tropical cyclones. However, traditional bulk algorithms predict a monotonic decrease in this ratio with increasing wind speed, giving a value of less than 0.5 under tropical cyclone conditions. The present model describes a decrease in the ratio with increasing wind speed under weak to moderate winds (<20 m s−1), and a plateau at approximately 0.7 under strong winds (>20 m s−1).

Corresponding author address: Naoto Kihara, Civil Engineering Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba 270-1194, Japan. kihara@criepi.denken.or.jp

Abstract

A boundary layer model for evaluating sensible and latent heat fluxes over a mature sea accounting for sea spray effects at wind speeds of up to 28 m s−1 is presented. Heat exchange across the ocean surface controls the development of tropical cyclones, and Emanuel’s theory suggests that the ratio of the exchange coefficient of total enthalpy to the drag coefficient should be greater than 0.75 to maintain the intensity of tropical cyclones. However, traditional bulk algorithms predict a monotonic decrease in this ratio with increasing wind speed, giving a value of less than 0.5 under tropical cyclone conditions. The present model describes a decrease in the ratio with increasing wind speed under weak to moderate winds (<20 m s−1), and a plateau at approximately 0.7 under strong winds (>20 m s−1).

Corresponding author address: Naoto Kihara, Civil Engineering Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba 270-1194, Japan. kihara@criepi.denken.or.jp

Save
  • Andreas, E. L. 1990. Time constants for the evolution of sea spray droplets. Tellus 42B:481497.

  • Andreas, E. L. 1992. Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res. 97:1142911441.

  • Andreas, E. L. 1998. A new sea spray generation function for wind speeds up to 32 m s−1. J. Phys. Oceanogr. 28:21752184.

  • Andreas, E. L. and B. Murphy. 1986. Bulk transfer coefficients for heat and momentum over leads and polynyas. J. Phys. Oceanogr. 16:18751883.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L. and J. K. DeCosmo. 1999. Sea spray production and influence on air-sea heat and moisture fluxes over the open ocean. Air-Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Kluwer Academic, 363–409.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L. and K. A. Emanuel. 2001. Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci. 58:37413751.

  • Andreas, E. L. and J. K. DeCosmo. 2002. The signature of sea spray in the HEXOS turbulent heat flux data. Bound.-Layer Meteor. 103:303333.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E. and J. C. R. Hunt. 1993. Turbulent shear flow over slowly moving waves. J. Fluid Mech. 251:109148.

  • Charnock, H. 1955. Wind stress on a water surface. Quart. J. Roy. Meteor. Soc. 81:639640.

  • DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick. 1996. Air-sea exchange of water vapor and sensible heat: The Humidity Exchange over the Sea (HEXOS) results. J. Geophys. Res. 101:1200112016.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman. 2004. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 31.L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark. 1997. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. 102:1578115796.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A. 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 43:585604.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A. 1995a. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci. 52:39693976.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A. 1995b. The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci. 52:39603968.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. D. Kepert, and G. J. Holland. 1994. The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst. 2:121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young. 1996. Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res. 101:37473764.

    • Search Google Scholar
    • Export Citation
  • Hara, T. and S. E. Belcher. 2002. Wind forcing in the equilibrium range of wind-wave spectra. J. Fluid Mech. 470:223245.

  • Hara, T. and S. E. Belcher. 2004. Wind profile and drag coefficient over mature ocean surface wave spectra. J. Phys. Oceanogr. 34:23452358.

    • Search Google Scholar
    • Export Citation
  • Coauthors 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogh. Z. Suppl. A 8:195.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. S. E. M. 1989. Wave-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr. 19:745754.

  • Kepert, J. D., C. W. Fairall, and J-W. Bao. 1999. Modelling the interaction between the atmospheric boundary layer and evaporating sea spray droplets. Air-Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Kluwer Academic, 363–409.

    • Search Google Scholar
    • Export Citation
  • Kihara, N., H. Hanazaki, T. Mizuya, and H. Ueda. 2007. Relationship between the airflow at the critical height and momentum transfer to the traveling waves. Phys. Fluids 19.015 102, doi:10.1063/1.2409736.

    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S. A. 1973. The Physics of Air-Sea Interactions. Keter Press, 273 pp.

  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen. 1994. Dynamics and Modeling of Ocean Waves. Cambridge University Press, 520 pp.

    • Search Google Scholar
    • Export Citation
  • Kondo, J. 1994. Meteorology of the Water Environment: Water and Heat Balance of the Earth’s Surface. (in Japanese). Asakura Shoten Press, 348 pp.

    • Search Google Scholar
    • Export Citation
  • Large, W. G. and S. Pond. 1981. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 11:324336.

  • Lighthill, J., G. Holland, W. Gray, C. Landsea, G. Craig, J. Evans, Y. Kurihara, and C. Guard. 1994. Global climate change and tropical cyclones. Bull. Amer. Meteor. Soc. 75:21472157.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., K. B. Katsaros, and J. A. Businger. 1979. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constrains at the interface. J. Atmos. Sci. 36:17221735.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K. 1999. A note on wind speed and sea state dependence of the heat exchange coefficient. Bound.-Layer Meteor. 91:127134.

  • Makin, V. K. and C. Mastenbroek. 1996. Impact of waves on air-sea exchange of sensible heat and momentum. Bound.-Layer Meteor. 79:301306.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K. and V. N. Kudryavtsev. 1999. Coupled sea surface-atmosphere model 1. Wind over waves coupling. J. Geophys. Res. 104:76137623.

    • Search Google Scholar
    • Export Citation
  • Moon, I-J., T. Hara, I. Ginis, S. E. Belcher, and H. Tolman. 2004a. Effect of surface waves on air–sea momentum exchange. Part I: Effect of mature and growing seas. J. Atmos. Sci. 61:23212333.

    • Search Google Scholar
    • Export Citation
  • Moon, I-J., I. Ginis, and T. Hara. 2004b. Effect of surface waves on air–sea momentum exchange. Part II: Behavior of drag coefficient under tropical cyclones. J. Atmos. Sci. 61:23342348.

    • Search Google Scholar
    • Export Citation
  • Moon, I-J., I. Ginis, and T. Hara. 2004c. Effect of surface waves on Charnock coefficient under tropical cyclones. Geophys. Res. Lett. 31.L20302, doi:10.1029/2004GL020988.

    • Search Google Scholar
    • Export Citation
  • Moon, I-J., I. Ginis, T. Hara, and B. Thomas. 2007. Physics-based parameterization of air–sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Wea. Rev. 135:28692878.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M. 1977. The Dynamics of the Upper Ocean. 2nd ed. Cambridge University Press, 336 pp.

  • Phillips, O. M. 1985. Spectral and statistical properties of the equilibrium range in the wind-generated gravity waves. J. Fluid Mech. 156:505531.

    • Search Google Scholar
    • Export Citation
  • Pierson, W. J. and L. Moskowitz. 1964. A proposed spectral form for fully developed wind sea based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res. 69:51815190.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold. 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279283.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R. and K. A. Emanuel. 1987. An air–sea interaction theory for tropical cyclones. Part II. J. Atmos. Sci. 44:542561.

  • Tolman, H. L. 2002. User manual and system documentation of WAVEWATCH-III, version 2.22. NOAA/NWS/NCEP/OMB Tech. Note 222, 133 pp.

  • Wang, Y., J. D. Kepert, and J. Holland. 2001. The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev. 129:24812500.

    • Search Google Scholar
    • Export Citation
  • Wu, J. 1973. Spray in the atmospheric surface layer: Laboratory study. J. Geophys. Res. 78:511519.

  • Zeng, X., M. Zhao, and R. E. Dickinson. 1998. Intercomparizon of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate 11:26282644.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 82 25 4
PDF Downloads 51 13 1