Water-Mass Transformations in a Neutral Density Framework and the Key Role of Light Penetration

Daniele Iudicone Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Unité Mixte de Recherche 7159 CNRS/IRD/UPMC/MNHN, Institut Pierre Simon Laplace, Paris, France, and Stazione Zoologica “Anton Dohrn,” Naples, Italy

Search for other papers by Daniele Iudicone in
Current site
Google Scholar
PubMed
Close
,
Gurvan Madec Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Unité Mixte de Recherche 7159 CNRS/IRD/UPMC/MNHN, Institut Pierre Simon Laplace, Paris, France, and National Oceanography Centre, Southampton, United Kingdom

Search for other papers by Gurvan Madec in
Current site
Google Scholar
PubMed
Close
, and
Trevor J. McDougall CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia

Search for other papers by Trevor J. McDougall in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A new formulation is proposed for the evaluation of the dianeutral transport in the ocean. The method represents an extension of the classical diagnostic approach for estimating the water-mass formation from the buoyancy balance. The inclusion of internal sources such as the penetrative solar shortwave radiation (i.e., depth-dependent heat transfer) in the estimate of surface buoyancy fluxes has a significant impact in several oceanic regions, and the former simplified formulation can lead to a 100% error in the estimate of water-mass formation due to surface buoyancy fluxes. Furthermore, internal mixing can also be overestimated in inversions of in situ data when the shortwave radiation is not allowed to be penetrative.

The method examines the evolution equation of neutral density via the tendencies of potential temperature and salinity. The neutral density framework does not require the choice of a reference pressure and thus, unlike previous approaches that consider potential density, it is well suited for examining the whole open-ocean water column.

The methodology is easy to implement, particularly for ocean numerical models. The authors present here its application to a long simulation made with an ice–ocean global model, which allowed the method to be validated.

Corresponding author address: Daniele Iudicone, Stazione Zoologica “A. Dohrn,” Villa Comunale 1, 80121 Naples, Italy. Email: iudicone@szn.it

Abstract

A new formulation is proposed for the evaluation of the dianeutral transport in the ocean. The method represents an extension of the classical diagnostic approach for estimating the water-mass formation from the buoyancy balance. The inclusion of internal sources such as the penetrative solar shortwave radiation (i.e., depth-dependent heat transfer) in the estimate of surface buoyancy fluxes has a significant impact in several oceanic regions, and the former simplified formulation can lead to a 100% error in the estimate of water-mass formation due to surface buoyancy fluxes. Furthermore, internal mixing can also be overestimated in inversions of in situ data when the shortwave radiation is not allowed to be penetrative.

The method examines the evolution equation of neutral density via the tendencies of potential temperature and salinity. The neutral density framework does not require the choice of a reference pressure and thus, unlike previous approaches that consider potential density, it is well suited for examining the whole open-ocean water column.

The methodology is easy to implement, particularly for ocean numerical models. The authors present here its application to a long simulation made with an ice–ocean global model, which allowed the method to be validated.

Corresponding author address: Daniele Iudicone, Stazione Zoologica “A. Dohrn,” Villa Comunale 1, 80121 Naples, Italy. Email: iudicone@szn.it

Save
  • Adkins, J. F., A. P. Ingersoll, and C. Pasquero, 2005: Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating. Quat. Sci. Rev., 24 , 581594.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., S. Speich, G. Madec, and K. Döös, 2001: A global diagnostic of interocean mass transfers. J. Phys. Oceanogr., 31 , 16231632.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., S. Speich, G. Madec, and R. Maugé, 2002: A global diagnostic of interior ocean ventilation. Geophys. Res. Lett., 29 .1267, doi:10.1029/2001GL013727.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109 .C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Donners, J., S. S. Drijfhout, and W. Hazeleger, 2005: Water mass transformation and subduction in the South Atlantic. J. Phys. Oceanogr., 35 , 18411860.

    • Search Google Scholar
    • Export Citation
  • D’Ortenzio, F., D. Iudicone, C. de Boyer Montégut, P. Testor, D. Antoine, S. Marullo, R. Santoleri, and G. Madec, 2005: Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles. Geophys. Res. Lett., 32 .L12605, doi:10.1029/2005GL022463.

    • Search Google Scholar
    • Export Citation
  • Dutay, J-C., G. Madec, P. Jean-Baptiste, and D. Iudicone, 2003: Study of the impact of the geothermal heating on ORCA model deep circulation deduced from natural helium-3 simulations. Geophysical Research Abstracts, Vol. 5, Abstract 06282. [Available online at http://www.cosis.net/abstracts/EAE03/06282/EAE03-J-06282.pdf.].

    • Search Google Scholar
    • Export Citation
  • Fine, R. A., K. A. Maillet, K. F. Sullivan, and D. Willey, 2001: Circulation and ventilation flux of the Pacific Ocean. J. Geophys. Res., 106 , 2215922178.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., K. Speer, and E. Tragou, 1995: The relationship between water mass formation and the surface buoyancy flux, with application to Phillips’ Red Sea model. J. Phys. Oceanogr., 25 , 16961705.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 373–386.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., P. de Vries, and G. J. van Oldenborgh, 2001: Do tropical cells ventilate the Indo-Pacific equatorial thermocline? Geophys. Res. Lett., 28 , 17631766.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, B. Blanke, and S. Speich, 2008: The role of Southern Ocean surface forcings and mixing in the global conveyor. J. Phys. Oceanogr., 38 , 13771400.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27 , 237263.

  • Large, W. G., and A. J. G. Nurser, 2001: Ocean surface water mass transformation. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 317–336.

    • Search Google Scholar
    • Export Citation
  • Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1999: OPA 8.1 ocean general circulation model reference manual. Notes du Pôle de modélisation, Institut Pierre-Simon Laplace, Paris, France, 91 pp.

  • Manizza, M., C. Le Quéré, A. J. Watson, and E. T. Buitenhuis, 2005: Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys. Res. Lett., 32 .L05603, doi:10.1029/2004GL020778.

    • Search Google Scholar
    • Export Citation
  • Marsh, R., 2000: Cabbeling due to isopycnal mixing in isopycnic coordinate models. J. Phys. Oceanogr., 30 , 17571775.

  • Marsh, R., A. J. G. Nurser, A. P. Megann, and A. L. New, 2000: Water mass transformation in the Southern Ocean of a global isopycnal coordinate GCM. J. Phys. Oceanogr., 30 , 10131045.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. J. G. Nurser, and R. G. Williams, 1993: Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr., 23 , 13151329.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46 , 545572.

    • Search Google Scholar
    • Export Citation
  • Marzeion, B., A. Timmermann, R. Murtugudde, and F-F. Jin, 2005: Biophysical feedbacks in the tropical Pacific. J. Climate, 18 , 5870.

  • McDougall, T. J., 1984: The relative roles of diapycnal and isopycnal mixing on subsurface water mass conversion. J. Phys. Oceanogr., 14 , 15771589.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987a: Neutral surfaces. J. Phys. Oceanogr., 17 , 19501964.

  • McDougall, T. J., 1987b: Thermobaricity, cabbeling, and water-mass conversion. J. Geophys. Res., 92 , 54485464.

  • McDougall, T. J., 1988: Neutral-surface potential vorticity. Prog. Oceanogr., 20 , 185221.

  • McDougall, T. J., 1995: The influence of ocean mixing on the absolute velocity vector. J. Phys. Oceanogr., 25 , 705725.

  • McDougall, T. J., and D. R. Jackett, 1988: On the helical nature of neutral trajectories in the ocean. Prog. Oceanogr., 20 , 153183.

  • McDougall, T. J., and D. R. Jackett, 2005: The material derivative of neutral density. J. Mar. Res., 63 , 159185.

  • Miller, A. J., and Coauthors, 2003: Potential feedbacks between Pacific Ocean ecosystems and interdecadal climate variations. Bull. Amer. Meteor. Soc., 84 , 617633.

    • Search Google Scholar
    • Export Citation
  • Mobley, C. D., 1994: Light and Water: Radiative Transfer in Natural Waters. Academic Press, 592 pp.

  • Nurser, A. J. G., R. Marsh, and R. G. Williams, 1999: Diagnosing water mass formation from air–sea fluxes and surface mixing. J. Phys. Oceanogr., 29 , 14681487.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., and D. A. Siegel, 2000: Ocean radiant heating. Part II: Parameterizing solar radiation transmission through the upper ocean. J. Phys. Oceanogr., 30 , 18491865.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., D. A. Siegel, and C. Gautier, 1996: Ocean mixed layer radiant heating and solar penetration: A global analysis. J. Climate, 9 , 22652280.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., J. P. McCreary Jr., and G. C. Johnson, 2004: Shallow overturning circulations of the tropical-subtropical oceans. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 261–304.

    • Search Google Scholar
    • Export Citation
  • Scott, J. R., J. Marotzke, and A. Adcroft, 2001: Geothermal heating and its influence on the meridional overturning circulation. J. Geophys. Res., 106 , 3114131154.

    • Search Google Scholar
    • Export Citation
  • Siegel, D. A., J. C. Ohlmann, L. Washburn, R. R. Bidigare, C. T. Nosse, E. Fields, and Y. Zhou, 1995: Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool. J. Geophys. Res., 100 , 48854891.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31 , 143173.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., G. C. Johnson, and W. S. Kessler, 2003: The Pacific cold tongue: A pathway for interhemispheric exchange. J. Phys. Oceanogr., 33 , 10271043.

    • Search Google Scholar
    • Export Citation
  • Speer, K., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22 , 93104.

  • Speer, K., H-J. Isemer, and A. Biastoch, 1995: Water mass formation from revised COADS data. J. Phys. Oceanogr., 25 , 24442457.

  • Stommel, H., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76 , 30513055.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16 , 32133226.

    • Search Google Scholar
    • Export Citation
  • Timmermann, R., H. Goosse, G. Madec, T. Fichefet, C. Ethe, and V. Duliere, 2005: On the representation of high latitude processes in the ORCA-LIM global coupled sea ice-ocean model. Ocean Modell., 8 , 175201.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., 1986: On the role of interior mixing and air–sea fluxes in determining the stratification and circulation of the oceans. J. Phys. Oceanogr., 16 , 680693.

    • Search Google Scholar
    • Export Citation
  • Veronis, G., 1972: On properties of seawater defined by temperature, salinity, and pressure. J. Mar. Res., 30 , 227255.

  • Viúdez, A., 2000: Volume and mass transport across isosurfaces of a balanced fluid property. J. Phys. Oceanogr., 30 , 14781485.

  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34 , 187195.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 , 281314.

    • Search Google Scholar
    • Export Citation
  • You, Y., and T. J. McDougall, 1990: Neutral surfaces and potential vorticity in the world’s oceans. J. Geophys. Res., 95 , 1323513261.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1709 684 147
PDF Downloads 708 205 28