The Global Conveyor Belt from a Southern Ocean Perspective

Daniele Iudicone Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Unité Mixte de Recherche 7159, CNRS/IRD/UPMC/MNHN, Institut Pierre Simon Laplace, Paris, France, and Stazione Zoologica Anton Dohrn, Naples, Italy

Search for other papers by Daniele Iudicone in
Current site
Google Scholar
PubMed
Close
,
Sabrina Speich Laboratoire de Physique des Océans, Unité Mixte de Recherche 6523, CNRS/IFREMER/IRD/UBO, Université de Bretagne Occidentale, UFR Sciences, Brest, France

Search for other papers by Sabrina Speich in
Current site
Google Scholar
PubMed
Close
,
Gurvan Madec Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Unité Mixte de Recherche 7159, CNRS/IRD/UPMC/MNHN, Institut Pierre Simon Laplace, Paris, France, and National Oceanography Centre, Southampton, United Kingdom

Search for other papers by Gurvan Madec in
Current site
Google Scholar
PubMed
Close
, and
Bruno Blanke Laboratoire de Physique des Océans, Unité Mixte de Recherche 6523, CNRS/IFREMER/IRD/UBO, Université de Bretagne Occidentale, UFR Sciences, Brest, France

Search for other papers by Bruno Blanke in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Recent studies have proposed the Southern Ocean as the site of large water-mass transformations; other studies propose that this basin is among the main drivers for North Atlantic Deep Water (NADW) circulation. A modeling contribution toward understanding the role of this basin in the global thermohaline circulation can thus be of interest. In particular, key pathways and transformations associated with the thermohaline circulation in the Southern Ocean of an ice–ocean coupled model have been identified here through the extensive use of quantitative Lagrangian diagnostics. The model Southern Ocean is characterized by a shallow overturning circulation transforming 20 Sv (1 Sv ≡ 106 m3 s−1) of thermocline waters into mode waters and a deep overturning related to the formation of Antarctic Bottom Water. Mode and intermediate waters contribute to 80% of the upper branch of the overturning in the Atlantic Ocean north of 30°S. A net upwelling of 11.5 Sv of Circumpolar Deep Waters is simulated in the Southern Ocean. Antarctic Bottom Water upwells into deep layers in the Pacific basin, forming Circumpolar Deep Water and subsurface thermocline water. The Southern Ocean is a powerful consumer of NADW: about 40% of NADW net export was found to upwell in the Southern Ocean, and 40% is transformed into Antarctic Bottom Water. The upwelling occurs south of the Polar Front and mainly in the Indian and Pacific Ocean sectors. The transformation of NADW to lighter water occurs in two steps: vertical mixing at the base of the mixed layer first decreases the salinity of the deep water upwelling south of the Antarctic Circumpolar Current, followed by heat input by air–sea and diffusive fluxes to complete the transformation to mode and intermediate waters.

Corresponding author address: Daniele Iudicone, Stazione Zoologica “A. Dohrn,” Villa Comunale 1, 80121 Naples, Italy. Email: iudicone@szn.it

Abstract

Recent studies have proposed the Southern Ocean as the site of large water-mass transformations; other studies propose that this basin is among the main drivers for North Atlantic Deep Water (NADW) circulation. A modeling contribution toward understanding the role of this basin in the global thermohaline circulation can thus be of interest. In particular, key pathways and transformations associated with the thermohaline circulation in the Southern Ocean of an ice–ocean coupled model have been identified here through the extensive use of quantitative Lagrangian diagnostics. The model Southern Ocean is characterized by a shallow overturning circulation transforming 20 Sv (1 Sv ≡ 106 m3 s−1) of thermocline waters into mode waters and a deep overturning related to the formation of Antarctic Bottom Water. Mode and intermediate waters contribute to 80% of the upper branch of the overturning in the Atlantic Ocean north of 30°S. A net upwelling of 11.5 Sv of Circumpolar Deep Waters is simulated in the Southern Ocean. Antarctic Bottom Water upwells into deep layers in the Pacific basin, forming Circumpolar Deep Water and subsurface thermocline water. The Southern Ocean is a powerful consumer of NADW: about 40% of NADW net export was found to upwell in the Southern Ocean, and 40% is transformed into Antarctic Bottom Water. The upwelling occurs south of the Polar Front and mainly in the Indian and Pacific Ocean sectors. The transformation of NADW to lighter water occurs in two steps: vertical mixing at the base of the mixed layer first decreases the salinity of the deep water upwelling south of the Antarctic Circumpolar Current, followed by heat input by air–sea and diffusive fluxes to complete the transformation to mode and intermediate waters.

Corresponding author address: Daniele Iudicone, Stazione Zoologica “A. Dohrn,” Villa Comunale 1, 80121 Naples, Italy. Email: iudicone@szn.it

Save
  • Blanke, B., and S. Raynaud, 1997: Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr., 27 , 10381053.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., S. Speich, G. Madec, and R. Maugé, 2002: A global diagnostic of interior ocean ventilation. Geophys. Res. Lett., 29 .1267, doi:10.1029/2001GL013727.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1987: The biggest chill. Nat. Hist., 96 , 7482.

  • Bryden, H. L., and S. A. Cunningham, 2003: How wind-forcing and air–sea heat exchange determine the meridional temperature gradient and stratification for the Antarctic Circumpolar Current. J. Geophys. Res., 108 .3275, doi:10.1029/2001JC001296.

    • Search Google Scholar
    • Export Citation
  • Delecluse, P., and G. Madec, 1999: Ocean modelling and the role of the ocean in the climate system. Modeling the Earth’s Climate and Its Variability, W. R. Holland, S. Joussaume, and F. David, Eds., Elsevier Science, 237–313.

    • Search Google Scholar
    • Export Citation
  • de Santillana, G., and H. von Dechend, 1992: Hamlet’s Mill: An Essay Investigating the Origins of Human Knowledge and Its Transmission through Myth. David R. Godine, 512 pp.

    • Search Google Scholar
    • Export Citation
  • Donners, J. M. H., S. S. Drijfhout, and W. Hazeleger, 2005: Water mass transformation and subduction in the South Atlantic. J. Phys. Oceanogr., 38 , 18411860.

    • Search Google Scholar
    • Export Citation
  • Döös, K., and A. C. Coward, 1997: The Southern Ocean as the major upwelling zone of the North Atlantic Deep Water. International WOCE Newsletter, No. 27, WOCE International Project Office, Southampton, United Kingdom, 3–17.

    • Search Google Scholar
    • Export Citation
  • England, M. H., 1993: Representing the global-scale water masses in ocean general circulation models. J. Phys. Oceanogr., 23 , 15231552.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. A. Morales Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102 , 1260912646.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453456.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16 , 696705.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283 , 20772079.

  • Gnanadesikan, A., B. L. Samuels, and R. D. Slater, 2003: Sensitivity of water mass transformation and heat transport to subgridscale mixing in coarse-resolution ocean models. Geophys. Res. Lett., 30 .1967, doi:10.1029/2003GL018036.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., 1996: The effect of the Indonesian Throughflow on ocean circulation and heat exchange with the atmosphere: A review. J. Geophys. Res., 101 , 1221712238.

    • Search Google Scholar
    • Export Citation
  • Goodman, P. J., 1998: The role of North Atlantic Deep Water formation in an OGCM’s ventilation and thermohaline circulation. J. Phys. Oceanogr., 28 , 17591785.

    • Search Google Scholar
    • Export Citation
  • Goodman, P. J., 2001: Thermohaline adjustment and advection in an OGCM. J. Phys. Oceanogr., 31 , 14771497.

  • Gordon, A. L., 1975: General ocean circulation. Numerical Models of Ocean Circulation: Proceedings of a Symposium Held at Durham, New Hampshire, October 17–20, 1972/Organized by the Ocean Science Committee of the Ocean Affairs Board, National Academy of Sciences, 39–53.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91 , 50375046.

  • Gordon, A. L., R. F. Weiss, W. M. Smethie Jr., and M. J. Warner, 1992: Thermocline and intermediate water communication between the South Atlantic and Indian Oceans. J. Geophys. Res., 97 , 72237240.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. H. G. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., and N. Suginohara, 1999: Atlantic deep circulation controlled by heating in the Southern Ocean. Geophys. Res. Lett., 26 , 18731876.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., 1999: Determination of water component age in ocean models: Application to the fate of North Atlantic Deep Water. Ocean Modell., 1 , 8194.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29 , 727746.

  • Iudicone, D., 2007: The role of Southern Ocean in the global thermohaline circulation inferred from an OGCM. Ph.D. thesis, Université de la Bretagne Occidentale, 206 pp.

  • Iudicone, D., G. Madec, J. C. Dutay, S. Speich, and S. Calmanti, 2005a: Sensitivity of the global thermohaline circulation to deep vertical mixing. European Geosciences Union General Assembly, Vienna, Austria.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., S. Speich, G. Madec, J. C. Dutay, and B. Blanke, 2005b: The role of the Southern Ocean in the global conveyor: Eulerian and Lagrangian analysis of an ice–ocean model. European Geosciences Union General Assembly, Vienna, Austria.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., K. B. Rodgers, R. Schopp, and G. Madec, 2007: An exchange window for the injection of Antarctic Intermediate Water into the South Pacific. J. Phys. Oceanogr., 37 , 3149.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, and T. J. McDougall, 2008a: Water-mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38 , 13571376.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, B. Blanke, and S. Speich, 2008b: The role of Southern Ocean surface forcings and mixing in the global conveyor. J. Phys. Oceanogr., 38 , 13771400.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27 , 237263.

  • Karstensen, J., 2004: Formation of the South Pacific Shallow Salinity Minimum: A Southern Ocean pathway to the tropical Pacific. J. Phys. Oceanogr., 34 , 23982412.

    • Search Google Scholar
    • Export Citation
  • Karstensen, J., and D. Quadfasel, 2002: Formation of Southern Hemisphere thermocline waters: Water mass conversion and subduction. J. Phys. Oceanogr., 32 , 30203038.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., S. Drijfhout, J. Marotzke, and J. R. Scott, 2003: Sensitivity of basinwide meridional overturning to diapycnal diffusion and remote wind forcing in an idealized Atlantic–Southern Ocean geometry. J. Phys. Oceanogr., 33 , 249266.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., S. Drijfhout, J. Marotzke, and J. R. Scott, 2004: Remote wind-driven overturning in the absence of the Drake Passage effect. J. Phys. Oceanogr., 34 , 10361049.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., J. Flückiger, T. F. Stocker, and A. Timmermann, 2004: Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature, 430 , 851856.

    • Search Google Scholar
    • Export Citation
  • Macdonald, A. M., 1998: The global ocean circulation: A hydrographic estimate and regional analysis. Prog. Oceanogr., 41 , 281382.

  • Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1998: OPA 8.1 ocean general circulation model reference manual. Notes Techniques du Pôle de Modélisation 11, Institut Pierre Simon Laplace, 91 pp.

  • Mantyla, A. W., and J. L. Reid, 1983: Abyssal characteristics of the World Ocean waters. Deep-Sea Res., 30 , 805833.

  • Marshall, J., and T. Radko, 2003: Residual mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33 , 23412354.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46 , 545572.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987: Neutral surfaces. J. Phys. Oceanogr., 17 , 19501964.

  • Mikolajewicz, U., and E. Maier-Reimer, 1990: Internal secular variability in an ocean general circulation model. Climate Dyn., 4 , 145156.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., G. C. Johnson, and J. L. Bullister, 1999: Circulation, mixing and production of Antarctic bottom water. Prog. Oceanogr., 43 , 55109.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. J., 1997: Thermohaline oscillations in the LSG OGCM: Propagating anomalies and sensitivity to parameterizations. J. Phys. Oceanogr., 27 , 22332255.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and M. H. England, 1997: Influence of Southern Hemisphere winds on North Atlantic Deep Water flow. J. Phys. Oceanogr., 27 , 20402054.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 1991: South Atlantic interbasin exchange. J. Geophys. Res., 96 , 26752692.

  • Rintoul, S. R., and M. H. England, 2002: Ekman transport dominates air–sea fluxes in driving variability of Subantarctic Mode Water. J. Phys. Oceanogr., 32 , 13081321.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., N. Gruber, M. Brzezinksi, and J. Dunne, 2004: High latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 426 , 5660.

    • Search Google Scholar
    • Export Citation
  • Saunders, P. M., and B. R. King, 1995: Oceanic fluxes on the WOCE A11 section. J. Phys. Oceanogr., 25 , 19421957.

  • Schmitz Jr., W. J., 1995: On the interbasin-scale thermohaline circulation. Rev. Geophys., 33 , 151173.

  • Schmitz JR, W. J., 1996a: On the World Ocean circulation. Volume 1: Some global features/North Atlantic Circulation. Tech. Rep. WHOI-96-O3. Woods Hole Oceanographic Institute, 140 pp.

    • Search Google Scholar
    • Export Citation
  • Schmitz JR, W. J., 1996b: On the World Ocean circulation. Volume 2: The Pacific and Indian Oceans/A global update. Tech. Rep. WHOI-96-08, Woods Hole Oceanographic Institute, 237 pp.

  • Scott, J. R., and J. Marotzke, 2002: The location of diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 32 , 35783595.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2000: Estimates of area-averaged diapycnal fluxes from basin-scale budgets. J. Phys. Oceanogr., 30 , 23202341.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001a: Circulation, renewal, and modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr., 31 , 10051030.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001b: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 30 , 143173.

    • Search Google Scholar
    • Export Citation
  • Sørensen, J. V. T., J. Ribbe, and G. Shaffer, 2001: On Antarctic Intermediate Water mass formation in ocean general circulation models. J. Phys. Oceanogr., 31 , 32953311.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30 , 32123222.

  • Speich, S., B. Blanke, and G. Madec, 2001: Warm and cold water paths of a GCM thermohaline conveyor belt. Geophys. Res. Lett., 28 , 311314.

    • Search Google Scholar
    • Export Citation
  • Speich, S., B. Blanke, P. de Vries, S. Drijfhout, K. Döös, A. Ganachaud, and R. Marsh, 2002: Tasman leakage: A new route in the global ocean conveyor belt. Geophys. Res. Lett., 29 .1416, doi:10.1029/2001GL014586.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2002: Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107 .3118, doi:10.1029/2001JC000888.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., and A. B. Arons, 1960: On the abyssal circulation of the world ocean. II: An idealized model of circulation pattern and amplitude in oceanic basins. Deep-Sea Res., 6 , 217233.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., M. W. Johnson, and R. H. Fleming, 1942: The Oceans: Their Physics, Chemistry, and General Biology. Prentice Hall, 1087 pp.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33 , 530560.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16 , 32133226.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2004: Freshwater transports of the global ocean: The role of oceans in climate. CLIVAR 2004, First Intl. CLIVAR Conf., Baltimore, MD.

    • Search Google Scholar
    • Export Citation
  • Timmermann, R., H. Goosse, G. Madec, T. Fichefet, C. Ethe, and V. Duliere, 2005: On the representation of high latitude processes in the ORCA-LIM global coupled sea ice–ocean model. Ocean Modell., 8 , 175201.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res., 42 , 477500.

  • Toggweiler, J. R., and B. Samuels, 1998: On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28 , 18321852.

    • Search Google Scholar
    • Export Citation
  • TRACMASS, 2001: Tracing the water masses of the North Atlantic and the Mediterranean. Final Rep. MAS3−CT97−0142 EU MAST III project TRACMASS, 55 pp.

  • Tsujino, H., and N. Suginohara, 1999: Thermohaline circulation enhanced by wind forcing. J. Phys. Oceanogr., 29 , 15061516.

  • Valdivieso Da Costa, M., and B. Blanke, 2004: Lagrangian methods for flow climatologies and trajectory error assessment. Ocean Modell., 6 , 335358.

    • Search Google Scholar
    • Export Citation
  • Webb, D. J., and N. Suginohara, 2001: Vertical mixing in the ocean. Nature, 409 , 37.

  • Williams, R. G., M. A. Spall, and J. C. Marshall, 1995: Does Stommel’s mixed layer demon work? J. Phys. Oceanogr., 25 , 30893102.

  • Wunsch, C., 2000: What is the thermohaline circulation? Science, 298 , 11801181.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 , 281314.

    • Search Google Scholar
    • Export Citation
  • Wüst, G., 1935: Schichtung und zirkulation des Atlantischen Ozeans, das Bodenwasser und die Stratosphere (Layering and circulation of the Atlantic Ocean, the bottom water, and the stratosphere). Vol. 6. Wissenschaftliche Ergebnisse der Deutschen Atlantischen Expedition auf dem Forschungs und Vermessungsschiff Meteor, 1925–1927, Walter de Gruyter, 109–288.

    • Search Google Scholar
    • Export Citation
  • You, C. Y., 1998: Dianeutral mixing and transformation of Antarctic Intermediate Water in the Indian Ocean. J. Geophys. Res., 103 , 3094130972.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2597 913 250
PDF Downloads 1455 218 15