• Agrawal, Y. C., , E. A. Terray, , M. A. Donelan, , P. A. Hwang, , A. J. Williams, , W. M. Drennan, , K. K. Kahma, , and S. A. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359 , 219220.

    • Search Google Scholar
    • Export Citation
  • Anis, A., , and J. N. Moum, 1995: Surface wave–turbulence interactions. Scaling ε(z) near the sea surface. J. Phys. Oceanogr., 25 , 20252045.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., , I. R. Young, , and M. L. Banner, 2001: Breaking probabilities for dominant surface waves on water of finite constant depth. J. Geophys. Res., 106 , 1165911676.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., , and X. Tian, 1998: On the determination of the onset of breaking for modulating surface gravity water waves. J. Fluid Mech., 367 , 107137.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., , A. V. Babanin, , and I. R. Young, 2000: Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr., 30 , 31453160.

    • Search Google Scholar
    • Export Citation
  • Bricker, J. D., , S. Inagaki, , and S. G. Monismith, 2005: Bed drag coefficient variability under wind waves in a tidal estuary. J. Hydraul. Eng., 131 , 497508.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., 2001: Simulating the wave-enhanced layer under breaking surface waves with two-equation turbulence models. J. Phys. Oceanogr., 31 , 31333145.

    • Search Google Scholar
    • Export Citation
  • Cacchione, D., , D. Drake, , R. Kayen, , R. Sternberg, , G. Kineke, , and G. Tate, 1995: Measurements in the bottom boundary-layer on the Amazon subaqueous delta. Mar. Geol., 125 , 235257.

    • Search Google Scholar
    • Export Citation
  • Conomos, T. J., , R. E. Smith, , and J. W. Gartner, 1985: Environmental setting of San Francisco Bay. Hydrobiologia, 129 , 112.

  • Craig, P. D., , and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24 , 25462559.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., , and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73 , 401426. doi:10.1017/S0022112076001420.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1990: Air–sea interaction. The Sea, B. LeMehaute and D. M. Hanes, Eds., Vol. 9, Ocean Engineering Science, Wiley, 239–292.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , and W. J. Pierson Jr., 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92 , 49715029.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , A. V. Babanin, , I. R. Young, , and M. L. Banner, 2006: Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input. J. Phys. Oceanogr., 36 , 16721689.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., , M. A. Donelan, , E. A. Terray, , and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26 , 808815.

    • Search Google Scholar
    • Export Citation
  • Emery, W., , and R. Thomson, 2001: Data Analysis Methods in Physical Oceanography. 2nd ed. Elsevier, 638 pp.

  • Feddersen, F., , and J. H. Trowbridge, 2005: The effect of wave breaking on surf-zone turbulence and alongshore currents: A modeling study. J. Phys. Oceanogr., 35 , 21872203.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., , and A. J. Williams III, 2007: Direct estimation of the Reynolds stress vertical structure in the nearshore. J. Atmos. Oceanic Technol., 24 , 102116.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., , J. H. Trowbridge, , and A. J. Williams III, 2007: Vertical structure of dissipation in the nearshore. J. Phys. Oceanogr., 37 , 17641777.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1989: Ocean turbulence. Annu. Rev. Fluid Mech., 21 , 419451.

  • Gemmrich, J. R., , and D. M. Farmer, 1999: Near-surface turbulence and thermal structure in a wind-driven sea. J. Phys. Oceanogr., 29 , 480499.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., , and D. M. Farmer, 2004: Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 34 , 10671086.

    • Search Google Scholar
    • Export Citation
  • Green, M. O., , and I. N. McCave, 1995: Seabed drag coefficient under tidal currents in the eastern Irish Sea. J. Geophys. Res., 100 , 1605716069.

    • Search Google Scholar
    • Export Citation
  • Greenan, B. J. W., , N. S. Oakey, , and F. W. Dobson, 2001: Estimates of dissipation in the ocean mixed layer using a quasi-horizontal microstructure profiler. J. Phys. Oceanogr., 31 , 9921004.

    • Search Google Scholar
    • Export Citation
  • Gross, T. F., , and A. R. M. Nowell, 1985: Spectral scaling in a tidal boundary layer. J. Phys. Oceanogr., 15 , 496508.

  • Heathershaw, A. D., 1979: Turbulent structure of the bottom boundary layer in a tidal current. Geophys. J. Int., 58 , 395430.

  • Isobe, M., , K. Kondo, , and K. Horikawa, 1984: Extension of MLM for estimating directional wave spectrum. Proc. Symp. on Description and Modeling of Directional Seas, Paper A-6, Copenhagen, Denmark, Danish Hydraulic Institute, 1–15.

    • Search Google Scholar
    • Export Citation
  • Johnson, D., 2002: DIWASP, a directional wave spectra toolbox for MATLAB: User manual. Centre for Water Research, University of Western Australia, Research Rep. WP-1601-DJ (V1.1), 19 pp. [Available online at http://www.metocean.co.nz/webcontent/software/DIWASP_manual.pdf.].

  • Jones, N. L., 2007: The role of wind waves and currents on vertical mixing in shallow water bodies: Implications for phytoplankton distribution. Ph.D. dissertation, Stanford University, 209 pp.

  • Jones, N. L., , and S. G. Monismith, 2007: Measuring short-period wind waves in a tidally forced environment with a subsurface pressure gauge. Limnol. Oceanogr. Methods, 5 , 317327.

    • Search Google Scholar
    • Export Citation
  • Jones, N. L., , and S. G. Monismith, 2008: Modeling the influence of wave-enhanced turbulence in a shallow tide- and wind-driven water column. J. Geophys. Res., 113 .C03009, doi:10.1029/2007JC004246.

    • Search Google Scholar
    • Export Citation
  • Jonsson, I. G., 1966: Wave boundary layers and friction factors. Proc. 10th Int. Conf. on Coastal Engineering, Tokyo, Japan, ASCE, 127–148.

  • Kranck, K., , and T. G. Milligan, 1992: Characteristics of suspended particles at an 11-hour anchor station in San Francisco Bay, California. J. Geophys. Res., 97 , 1137311382.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., 1980: A numerical investigation of mixed-layer dynamics. J. Phys. Oceanogr., 10 , 220236.

  • Lumley, J. L., , and E. A. Terray, 1983: Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr., 13 , 20002007.

  • Magnaudet, J., , and L. Thais, 1995: Orbital rotational motion and turbulence below laboratory wind water waves. J. Geophys. Res., 100 , 757771.

    • Search Google Scholar
    • Export Citation
  • Mirfenderesk, H., , and I. R. Young, 2003: Direct measurements of the bottom friction factor beneath surface gravity waves. Appl. Ocean Res., 25 , 269287.

    • Search Google Scholar
    • Export Citation
  • Monismith, S. G., , and J. Magnaudet, 1998: On wavy mean flows, Langmuir cells, strain, and turbulence. Physical Processes in Lakes and Oceans, J. Imberger, Ed., Coastal and Estuarine Studies Series, Vol. 54, Amer. Geophys. Union, 101–110.

    • Search Google Scholar
    • Export Citation
  • Nepf, H. M., , E. A. Cowen, , S. J. Kimmel, , and S. G. Monismith, 1995: Longitudinal vortices beneath breaking waves. J. Geophys. Res., 100 , 1621116222.

    • Search Google Scholar
    • Export Citation
  • Rapp, R. J., , and W. K. Melville, 1990: Laboratory measurements of deep-water breaking waves. Philos. Trans. Roy. Soc. London, 331A , 735800.

    • Search Google Scholar
    • Export Citation
  • Reidenbach, M. A., , S. G. Monismith, , J. R. Koseff, , G. Yahel, , and A. Genin, 2006: Boundary layer turbulence and flow structure over a fringing coral reef. Limnol. Oceanogr., 51 , 19561968.

    • Search Google Scholar
    • Export Citation
  • Shaw, W., , and J. Trowbridge, 2001: The direct estimation of near-bottom turbulent fluxes in the presence of energetic wave motions. J. Atmos. Oceanic Technol., 18 , 15401557.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., , and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100 , 85018522.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1999: Observations of wind, waves, and the mixed layer: The scaling of surface motion. The Wind-Driven Air–Sea Interface: Electromagnetic and Acoustic Sensing, Wave Dynamics, and Turbulent Fluxes, M. L. Banner, Ed., University of New South Wales, 231–238.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., , and R. Lukas, 2003: Observation of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep-Sea Res. I, 50 , 371395.

    • Search Google Scholar
    • Export Citation
  • Stips, A., , H. Burchard, , K. Bolding, , H. Prandke, , A. Simon, , and A. Wüest, 2005: Measurement and simulation of viscous dissipation in the wave affected surface layer. Deep-Sea Res. II, 52 , 11331155.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., , and S. E. Belcher, 2002: On the distortion of turbulence by a progressive surface wave. J. Fluid Mech., 458 , 229267.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., , M. A. Donelan, , Y. C. Agrawal, , W. M. Drennan, , K. K. Kahma, , A. J. Williams, , P. A. Hwang, , and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26 , 792807.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., , W. M. Drennan, , and M. A. Donelan, 1999: The vertical structure of shear and dissipation in the ocean surface layer. Proc. Symp. on the Wind-Driven Air–Sea Interface: Electromagnetic and Acoustic Sensing, Wave-Dynamics, and Turbulent Fluxes, Sydney, Australia, University of New South Wales, 239–245.

  • Thompson, J. K., , J. R. Koseff, , S. G. Monismith, , and L. V. Lucas, 2008: Shallow water processes govern system-wide phytoplankton bloom dynamics: A field study. J. Mar. Syst., doi:10.1016/j.jmarsys.2007.12.006.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1982: On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air–sea gas transfer. Philos. Trans. Roy. Soc. London, 304A , 155210.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2004: Recent developments in the study of ocean turbulence. Annu. Rev. Earth Planet. Sci., 32 , 91109.

  • Trowbridge, J., 1998: On a technique for measurement of turbulent shear stress in the presence of surface waves. J. Atmos. Oceanic Technol., 15 , 290298.

    • Search Google Scholar
    • Export Citation
  • Trowbridge, J., , and S. Elgar, 2001: Turbulence measurements in the surf zone. J. Phys. Oceanogr., 31 , 24032417.

  • Umlauf, L., , H. Burchard, , and K. Hutter, 2003: Extending the k-ω turbulence model towards oceanic applications. Ocean Modell., 5 , 195218.

    • Search Google Scholar
    • Export Citation
  • Veron, F., , and W. K. Melville, 2001: Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech., 446 , 2565.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and R. X. Huang, 2004: Wind energy input to the surface waves. J. Phys. Oceanogr., 34 , 12761280.

  • Warner, J. C., , D. H. Schoellhamer, , C. A. Ruhl, , and J. R. Burau, 2004: Floodtide pulses after low tides in shallow subembayments adjacent to deep channels. Estuarine Coastal Shelf Sci., 60 , 213228.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., , and L. A. Verhagen, 1996: The growth of fetch limited waves in water of finite depth. 1. Total energy and peak frequency. Coastal Eng., 29 , 4778.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., , and A. V. Babanin, 2006a: The form of the asymptotic depth-limited wind wave frequency spectrum. J. Geophys. Res., 111 .C06031, doi:10.1029/2005JC003398.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., , and A. V. Babanin, 2006b: Spectral distribution of energy dissipation of wind-generated waves due to dominant wave breaking. J. Phys. Oceanogr., 36 , 376394.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., , M. L. Banner, , M. A. Donelan, , A. V. Babanin, , W. K. Melville, , F. Veron, , and C. McCormick, 2005: An integrated system for the study of wind-wave source terms in finite-depth water. J. Atmos. Oceanic Technol., 22 , 814831.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 115 115 6
PDF Downloads 106 106 6

The Influence of Whitecapping Waves on the Vertical Structure of Turbulence in a Shallow Estuarine Embayment

View More View Less
  • 1 Environmental Fluid Mechanics Laboratory, Civil and Environmental Engineering, Stanford University, Stanford, California
© Get Permissions
Restricted access

Abstract

The vertical distribution of the turbulent kinetic energy dissipation rate was measured using an array of four acoustic Doppler velocimeters in the shallow embayment of Grizzly Bay, San Francisco Bay, California. Owing to the combination of wind and tide forcing in this shallow system, the surface and bottom boundary layers overlapped. Whitecapping waves were generated for a significant spectral peak steepness greater than 0.05 or above a wind speed of 3 m s−1. Under conditions of whitecapping waves, the turbulent kinetic energy dissipation rate in the upper portion of the water column was greatly enhanced, relative to the predictions of wind stress wall-layer theory. Instead, the dissipation followed a modified deep-water breaking-wave scaling. Near the bed (bottom 10% of the water column), the dissipation measurements were either equal to or less than that predicted by wall-layer theory. Stratification due to concentration gradients in suspended sediment was identified as the likely cause for these periods of production–dissipation imbalance close to the bed. During 50% of the well-mixed conditions experienced in the month-long experiment, whitecapping waves provided the dominant source of turbulent kinetic energy over 90% or more of the water column.

* Current affiliation: School of Environmental Systems Engineering, The University of Western Australia, Crawley, Western Australia, Australia

Corresponding author address: Nicole L. Jones, School of Environmental Systems Engineering, The University of Western Australia, MO15, 35 Stirling Highway, Crawley, WA 6009, Australia. Email: nicole.jones@uwa.edu.au

Abstract

The vertical distribution of the turbulent kinetic energy dissipation rate was measured using an array of four acoustic Doppler velocimeters in the shallow embayment of Grizzly Bay, San Francisco Bay, California. Owing to the combination of wind and tide forcing in this shallow system, the surface and bottom boundary layers overlapped. Whitecapping waves were generated for a significant spectral peak steepness greater than 0.05 or above a wind speed of 3 m s−1. Under conditions of whitecapping waves, the turbulent kinetic energy dissipation rate in the upper portion of the water column was greatly enhanced, relative to the predictions of wind stress wall-layer theory. Instead, the dissipation followed a modified deep-water breaking-wave scaling. Near the bed (bottom 10% of the water column), the dissipation measurements were either equal to or less than that predicted by wall-layer theory. Stratification due to concentration gradients in suspended sediment was identified as the likely cause for these periods of production–dissipation imbalance close to the bed. During 50% of the well-mixed conditions experienced in the month-long experiment, whitecapping waves provided the dominant source of turbulent kinetic energy over 90% or more of the water column.

* Current affiliation: School of Environmental Systems Engineering, The University of Western Australia, Crawley, Western Australia, Australia

Corresponding author address: Nicole L. Jones, School of Environmental Systems Engineering, The University of Western Australia, MO15, 35 Stirling Highway, Crawley, WA 6009, Australia. Email: nicole.jones@uwa.edu.au

Save