• Andreas, E. L., 1989: Thermal and size evolution of sea spray droplets. CRREL Rep. 89-11, U.S. Army Cold Regions Research and Engineering Laboratory, 37 pp.

  • Andreas, E. L., 1990: Time constants for the evolution of sea spray droplets. Tellus, 42B , 481497.

  • Andreas, E. L., 1992: Sea spray and the turbulent air–sea heat fluxes. J. Geophys. Res., 97 , 1142911441.

  • Andreas, E. L., 1994: Reply. J. Geophys. Res., 99 , 1434514350.

  • Andreas, E. L., 1995: The temperature of evaporating sea spray droplets. J. Atmos. Sci., 52 , 852862.

  • Andreas, E. L., 1998: A new sea spray generation function for wind speeds up to 32 m s−1. J. Phys. Oceanogr., 28 , 21752184.

  • Andreas, E. L., 2002a: A review of the sea spray generation function for the open ocean. Atmosphere–Ocean Interactions, Vol. 1, W. Perrie, Ed., WIT Press, 1–46.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 2002b: Parameterizing scalar transfer over snow and ice: A review. J. Hydrometeor., 3 , 417432.

  • Andreas, E. L., 2003: An algorithm to predict the turbulent air–sea fluxes in high-wind, spray conditions. Preprints, 12th Conf. on Interaction of the Sea and Atmosphere, Long Beach, CA, Amer. Meteor. Soc., 3.4. [Available online at http://ams.confex.com/ams/pdfpapers/52221.pdf.].

  • Andreas, E. L., 2004a: A bulk air–sea flux algorithm for high-wind, spray conditions, version 2.0. Preprints, 13th Conf. on Interactions of the Sea and Atmosphere, Portland, ME, Amer. Meteor. Soc., P1.5. [Available online at http://ams.confex.com/ams/pdfpapers/77949.pdf.].

  • Andreas, E. L., 2004b: Spray stress revisited. J. Phys. Oceanogr., 34 , 14291440.

  • Andreas, E. L., 2005a: Approximation formulas for the microphysical properties of saline droplets. Atmos. Res., 75 , 323345.

  • Andreas, E. L., 2005b: Handbook of Physical Constants and Functions for Use in Atmospheric Boundary Layer Studies. ERDC/CRREL Monogr. No. M-05-1, U.S. Army Cold Regions Research and Engineering Laboratory, 42 pp.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., , and J. DeCosmo, 1999: Sea spray production and influence on air–sea heat and moisture fluxes over the open ocean. Air–Sea Exchange: Physics, Chemistry, and Dynamics, G. L. Geernaert, Ed., Kluwer, 327–362.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., , and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58 , 37413751.

  • Andreas, E. L., , and J. DeCosmo, 2002: The signature of sea spray in the HEXOS turbulent heat flux data. Bound.-Layer Meteor., 103 , 303333.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., , and S. Wang, 2007: Predicting significant wave height off the northeast coast of the United States. Ocean Eng., 34 , 13281335.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., , J. B. Edson, , E. C. Monahan, , M. P. Rouault, , and S. D. Smith, 1995: The spray contribution to net evaporation from the sea: A review of recent progress. Bound.-Layer Meteor., 72 , 352.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., , K. J. Claffey, , R. E. Jordan, , C. W. Fairall, , P. S. Guest, , P. O. G. Persson, , and A. A. Grachev, 2006: Evaluations of the von Kármán constant in the atmospheric surface layer. J. Fluid Mech., 559 , 117149.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., , P. O. G. Persson, , and J. E. Hare, 2007: A bulk turbulent air–sea flux algorithm for high-wind, spray conditions. Preprints, 15th Conf. on Air–Sea Interaction, Portland, OR, Amer. Meteor. Soc., 13.4. [Available online at http://ams.confex.com/ams/pdfpapers/125065.pdf.].

  • Bao, J-W., , J. M. Wilczak, , J-K. Choi, , and L. H. Kantha, 2000: Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128 , 21902210.

    • Search Google Scholar
    • Export Citation
  • Bendat, J. S., , and A. G. Piersol, 1971: Random Data: Analysis and Measurement Procedures. Wiley-Interscience, 407 pp.

  • Bourassa, M. A., , D. G. Vincent, , and W. L. Wood, 1999: A flux parameterization including the effects of capillary waves and sea state. J. Atmos. Sci., 56 , 11231139.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., , X. Zeng, , and S. Anderson, 2002: Uncertainties in sea surface turbulent flux algorithms and data sets. J. Geophys. Res., 107 .3141, doi:10.1029/2001JC000992.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., , C. W. Fairall, , X. Zeng, , L. Eymard, , and J. A. Curry, 2003: Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J. Climate, 16 , 619635.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., 1982: The fluxes of specific enthalpy, sensible heat, and latent heat near the earth’s surface. J. Atmos. Sci., 39 , 18891892.

    • Search Google Scholar
    • Export Citation
  • Chang, H-R., , and R. L. Grossman, 1999: Evaluation of bulk surface flux algorithms for light wind conditions using data from the Coupled Ocean-Atmosphere Response Experiment (COARE). Quart. J. Roy. Meteor. Soc., 125 , 15511588.

    • Search Google Scholar
    • Export Citation
  • Clayson, C. A., , C. W. Fairall, , and J. A. Curry, 1996: Evaluation of turbulent fluxes at the ocean surface using surface renewal theory. J. Geophys. Res., 101 , 2850328513.

    • Search Google Scholar
    • Export Citation
  • Clift, R., , J. R. Grace, , and M. E. Weber, 1978: Bubbles, Drops, and Particles. Academic Press, 380 pp.

  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci., 27 , 12111213.

    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., 1991: Air–sea exchange of momentum, heat and water vapor over whitecap sea states. Ph.D. dissertation, University of Washington, 212 pp.

  • DeCosmo, J., , K. B. Katsaros, , S. D. Smith, , R. J. Anderson, , W. A. Oost, , K. Bumke, , and H. Chadwick, 1996: Air–sea exchange of water vapor and sensible heat: The Humidity Exchange over the Sea (HEXOS) results. J. Geophys. Res., 101 , 1200112016.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., , and E. L. Andreas, 1997: Modeling the role of sea spray on air–sea heat and moisture exchange. Preprints. 12th Symp. on Boundary Layers and Turbulence, Vancouver, BC, Canada, Amer. Meteor. Soc., 490–491.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., , S. Anquetin, , P. G. Mestayer, , and J. F. Sini, 1996: Spray droplet modeling. 2. An interactive Eulerian–Lagrangian model of evaporating spray droplets. J. Geophys. Res., 101 , 12791293.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52 , 39693976.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , J. D. Kepert, , and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2 , 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , J. S. Godfrey, , G. A. Wick, , J. B. Edson, , and G. S. Young, 1996a: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101 , 12951308.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996b: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , J. E. Hare, , A. A. Grachev, , and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Friedlander, S. K., 1977: Smoke, Dust, and Haze: Fundamentals of Aerosol Behavior. Wiley, 317 pp.

  • Godfrey, J. S., , and A. C. M. Beljaars, 1991: On the turbulent fluxes of buoyancy, heat and moisture at the air–sea interface at low wind speeds. J. Geophys. Res., 96 , 2204322048.

    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., , and P. Hignett, 1998: Aircraft observations of the surface energy balance in TOGA-COARE. Quart. J. Roy. Meteor. Soc., 124 , 101122.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., , and H. A. R. De Bruin, 1988: Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteor., 27 , 689704.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. K., , J. Højstrup, , H. J. Vested, , and S. E. Larsen, 1998: On the dependence of sea surface roughness on wind waves. J. Phys. Oceanogr., 28 , 17021716.

    • Search Google Scholar
    • Export Citation
  • Joly, A., and Coauthors, 1997: The Fronts and Atlantic Storm-Track Experiment (FASTEX): Scientific objectives and experimental design. Bull. Amer. Meteor. Soc., 78 , 19171940.

    • Search Google Scholar
    • Export Citation
  • Jordan, R. E., , E. L. Andreas, , and A. P. Makshtas, 1999: Heat budget of snow-covered sea ice at North Pole 4. J. Geophys. Res., 104 , 77857806.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., , and J. DeCosmo, 1990: Evaporation in high wind speeds, sea surface temperature at low wind speeds, examples of atmospheric regulation. Proc. Workshop on Modelling the Fate and Influence of Marine Spray, Marine Sciences Institute, University of Connecticut, Groton, CT, 106–114.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., , and G. de Leeuw, 1994: Comment on “Sea spray and the turbulent air–sea heat fluxes” by Edgar L Andreas. J. Geophys. Res., 99 , 1433914343.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., , S. D. Smith, , and W. A. Oost, 1987: HEXOS—Humidity Exchange over the Sea: A program for research on water-vapor and droplet fluxes from sea to air at moderate to high wind speeds. Bull. Amer. Meteor. Soc., 68 , 466476.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., and Coauthors, 1994: Measurements of humidity and temperature in the marine environment during the HEXOS main experiment. J. Atmos. Oceanic Technol., 11 , 964981.

    • Search Google Scholar
    • Export Citation
  • Kepert, J., , C. Fairall, , and J-W. Bao, 1999: Modelling the interaction between the atmospheric boundary layer and evaporating sea spray droplets. Air–Sea Exchange: Physics, Chemistry, and Dynamics, G. L. Geernaert, Ed., Kluwer, 363–409.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., , K. B. Katsaros, , and J. A. Businger, 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36 , 17221735.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., 1998: Air–sea exchange of heat in the presence of wind waves and spray. J. Geophys. Res., 103 , 11371152.

  • Mestayer, P. G., , A. M. J. Van Eijk, , G. de Leeuw, , and B. Tranchant, 1996: Numerical simulation of the dynamics of sea spray over the waves. J. Geophys. Res., 101 , 2077120797.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9 , 857861.

    • Search Google Scholar
    • Export Citation
  • Perrie, W., , X. Ren, , W. Zhang, , and Z. Long, 2004: Simulation of extratropical Hurricane Gustav using a coupled atmosphere–ocean–sea spray model. Geophys. Res. Lett., 31 .L03110, doi:10.1029/2003GL018571.

    • Search Google Scholar
    • Export Citation
  • Perrie, W., , E. L. Andreas, , W. Zhang, , W. Li, , J. Gyakum, , and R. McTaggart-Cowan, 2005: Sea spray impacts on intensifying midlatitude cyclones. J. Atmos. Sci., 62 , 18671883.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., , J. E. Hare, , C. W. Fairall, , and W. D. Otto, 2005: Air–sea interaction processes in warm and cold sectors of extratropical cyclonic storms observed during FASTEX. Quart. J. Roy. Meteor. Soc., 131 , 877912.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93 , 1546715472.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1990: Influence of droplet evaporation on HEXOS humidity and temperature profiles. Proc. Workshop on Modelling the Fate and Influence of Marine Spray, Marine Sciences Institute, University of Connecticut, Groton, CT, 171–174.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., and Coauthors, 1992: Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteor., 60 , 109142.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., , K. B. Katsaros, , W. A. Oost, , and P. G. Mestayer, 1996: The impact of the HEXOS programme. Bound.-Layer Meteor., 78 , 121141.

    • Search Google Scholar
    • Export Citation
  • Van Eijk, A. M. J., , B. S. Tranchant, , and P. G. Mestayer, 2001: SeaCluse: Numerical simulation of evaporating sea spray droplets. J. Geophys. Res., 106 , 25732588.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , J. D. Kepert, , and G. J. Holland, 2001: The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129 , 24812500.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1982: Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87 , 97049706.

  • Zeng, X., , M. Zhao, , and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11 , 26282644.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , W. Perrie, , and W. Li, 2006: Impacts of waves and sea spray on midlatitude storm structure and intensity. Mon. Wea. Rev., 134 , 24182442.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1969: On the computation of the basic parameters of the interaction between the atmosphere and the ocean. Tellus, 21 , 1724.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 113 113 16
PDF Downloads 102 102 14

A Bulk Turbulent Air–Sea Flux Algorithm for High-Wind, Spray Conditions

View More View Less
  • 1 NorthWest Research Associates, Inc., Lebanon, New Hampshire
  • | 2 Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/ESRL/PSD, Boulder, Colorado
  • | 3 SOLAS International Project Office, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
© Get Permissions
Restricted access

Abstract

Sensible and latent heat can cross the air–sea interface by two routes: as interfacial fluxes controlled by molecular processes right at the interface, and as spray fluxes from the surface of sea spray droplets. Once the 10-m wind speed over the ocean reaches approximately 11–13 m s−1, the spray sensible and latent heat fluxes become significant fractions (i.e., 10% or greater) of the corresponding interfacial fluxes. The analysis here establishes that result by combining the Tropical Ocean-Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (COARE) version 2.6 bulk interfacial flux algorithm with a microphysical spray model to partition measured heat fluxes from two good high-wind datasets into spray and interfacial flux contributions. The measurements come from the Humidity Exchange over the Sea (HEXOS) experiment and the Fronts and Atlantic Storm-Tracks Experiment (FASTEX); wind speeds in these two datasets span 5 to 20 m s−1.

After the measured heat fluxes are separated into spray and interfacial contributions, the spray fluxes are used to develop a fast spray flux algorithm to combine with the COARE version 2.6 interfacial flux algorithm in a unified turbulent surface flux algorithm for use in large-scale and ocean storm models. A sensitivity analysis of the spray and interfacial components of this unified flux algorithm demonstrates how the two component fluxes scale differently with the mean meteorological variables and why they must therefore be parameterized separately in models intended to treat air–sea fluxes in high winds.

Corresponding author address: Dr. Edgar L Andreas, NorthWest Research Associates, Inc., 25 Eagle Ridge, Lebanon, NH 03766-1900. Email: eandreas@nwra.com

Abstract

Sensible and latent heat can cross the air–sea interface by two routes: as interfacial fluxes controlled by molecular processes right at the interface, and as spray fluxes from the surface of sea spray droplets. Once the 10-m wind speed over the ocean reaches approximately 11–13 m s−1, the spray sensible and latent heat fluxes become significant fractions (i.e., 10% or greater) of the corresponding interfacial fluxes. The analysis here establishes that result by combining the Tropical Ocean-Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (COARE) version 2.6 bulk interfacial flux algorithm with a microphysical spray model to partition measured heat fluxes from two good high-wind datasets into spray and interfacial flux contributions. The measurements come from the Humidity Exchange over the Sea (HEXOS) experiment and the Fronts and Atlantic Storm-Tracks Experiment (FASTEX); wind speeds in these two datasets span 5 to 20 m s−1.

After the measured heat fluxes are separated into spray and interfacial contributions, the spray fluxes are used to develop a fast spray flux algorithm to combine with the COARE version 2.6 interfacial flux algorithm in a unified turbulent surface flux algorithm for use in large-scale and ocean storm models. A sensitivity analysis of the spray and interfacial components of this unified flux algorithm demonstrates how the two component fluxes scale differently with the mean meteorological variables and why they must therefore be parameterized separately in models intended to treat air–sea fluxes in high winds.

Corresponding author address: Dr. Edgar L Andreas, NorthWest Research Associates, Inc., 25 Eagle Ridge, Lebanon, NH 03766-1900. Email: eandreas@nwra.com

Save