The Role of Southern Ocean Surface Forcings and Mixing in the Global Conveyor

Daniele Iudicone Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Unité Mixte de Recherche 7159, CNRS/IRD/UPMC/MNHN, Institut Pierre Simon Laplace, Paris, France, and Stazione Zoologica Anton Dohrn, Naples, Italy, and National Oceanography Centre, Southampton, United Kingdom

Search for other papers by Daniele Iudicone in
Current site
Google Scholar
PubMed
Close
,
Gurvan Madec Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, Unité Mixte de Recherche 7159, CNRS/IRD/UPMC/MNHN, Institut Pierre Simon Laplace, Paris, France, and National Oceanography Centre, Southampton, United Kingdom

Search for other papers by Gurvan Madec in
Current site
Google Scholar
PubMed
Close
,
Bruno Blanke Laboratoire de Physique des Océans, Unité Mixte de Recherche 6523, CNRS/IFREMER/IRD/UBO, Université de Bretagne Occidentale, UFR Sciences, Brest, France

Search for other papers by Bruno Blanke in
Current site
Google Scholar
PubMed
Close
, and
Sabrina Speich Laboratoire de Physique des Océans, Unité Mixte de Recherche 6523, CNRS/IFREMER/IRD/UBO, Université de Bretagne Occidentale, UFR Sciences, Brest, France

Search for other papers by Sabrina Speich in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Despite the renewed interest in the Southern Ocean, there are yet many unknowns because of the scarcity of measurements and the complexity of the thermohaline circulation. Hence the authors present here the analysis of the thermohaline circulation of the Southern Ocean of a steady-state simulation of a coupled ice–ocean model. The study aims to clarify the roles of surface fluxes and internal mixing, with focus on the mechanisms of the upper branch of the overturning. A quantitative dynamical analysis of the water-mass transformation has been performed using a new method. Surface fluxes, including the effect of the penetrative solar radiation, produce almost 40 Sv (1 Sv ≡ 106 m3 s−1) of Subantarctic Mode Water while about 5 Sv of the densest water masses (γ > 28.2) are formed by brine rejection on the shelves of Antarctica and in the Weddell Sea. Mixing transforms one-half of the Subantarctic Mode Water into intermediate water and Upper Circumpolar Deep Water while bottom water is produced by Lower Circumpolar Deep Water and North Atlantic Deep Water mixing with shelf water. The upwelling of part of the North Atlantic Deep Water inflow is due to internal processes, mainly downward propagation of the surface freshwater excess via vertical mixing at the base of the mixed layer. A complementary Lagrangian analysis of the thermohaline circulation will be presented in a companion paper.

Corresponding author address: Daniele Iudicone, Stazione Zoologica “A. Dohrn,” Villa Comunale 1, 80121 Naples, Italy. Email: iudicone@szn.it

Abstract

Despite the renewed interest in the Southern Ocean, there are yet many unknowns because of the scarcity of measurements and the complexity of the thermohaline circulation. Hence the authors present here the analysis of the thermohaline circulation of the Southern Ocean of a steady-state simulation of a coupled ice–ocean model. The study aims to clarify the roles of surface fluxes and internal mixing, with focus on the mechanisms of the upper branch of the overturning. A quantitative dynamical analysis of the water-mass transformation has been performed using a new method. Surface fluxes, including the effect of the penetrative solar radiation, produce almost 40 Sv (1 Sv ≡ 106 m3 s−1) of Subantarctic Mode Water while about 5 Sv of the densest water masses (γ > 28.2) are formed by brine rejection on the shelves of Antarctica and in the Weddell Sea. Mixing transforms one-half of the Subantarctic Mode Water into intermediate water and Upper Circumpolar Deep Water while bottom water is produced by Lower Circumpolar Deep Water and North Atlantic Deep Water mixing with shelf water. The upwelling of part of the North Atlantic Deep Water inflow is due to internal processes, mainly downward propagation of the surface freshwater excess via vertical mixing at the base of the mixed layer. A complementary Lagrangian analysis of the thermohaline circulation will be presented in a companion paper.

Corresponding author address: Daniele Iudicone, Stazione Zoologica “A. Dohrn,” Villa Comunale 1, 80121 Naples, Italy. Email: iudicone@szn.it

Save
  • Beckmann, A., and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr., 27 , 581591.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23 , 13631388.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and S. Raynaud, 1997: Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr., 27 , 10381053.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., S. Speich, G. Madec, and R. Maugé, 2002: A global diagnostic of interior ocean ventilation. Geophys. Res. Lett., 29 .1267, doi:10.1029/2001GL013727.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1987: The biggest chill. Nat. Hist., 96 , 7482.

  • Bryden, H. L., and S. A. Cunningham, 2003: How wind-forcing and air–sea heat exchange determine the meridional temperature gradient and stratification for the Antarctic Circumpolar Current. J. Geophys. Res., 108 .3275, doi:10.1029/2001JC001296.

    • Search Google Scholar
    • Export Citation
  • Conkright, M., S. Levitus, T. O’Brien, T. Boyer, J. Antonov, and C. Stephens, 1998: World Ocean Atlas 1998. CD-ROM Data Set Documentation. NODC Internal Tech. Rep. 15, 16 pp.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., S. G. Alderson, B. A. King, and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res., 108 .8084, doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., C. C. Young, and S. Levitus, 1994a: Anomalies of Heat and Momentum Fluxes. Vol. 3, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 8, 411 pp.

    • Search Google Scholar
    • Export Citation
  • da Silva, A. M., C. C. Young, and S. Levitus, 1994b: Anomalies of Freshwater Fluxes. Vol. 4, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 9, 308 pp.

    • Search Google Scholar
    • Export Citation
  • Delecluse, P., and G. Madec, 1999: Ocean modeling and the role of the ocean in the climate system. Modeling the Earth’s Climate and Its Variability, W. R. Holland, S. Joussaume, and F. David, Eds., Elsevier Science, 237–313.

    • Search Google Scholar
    • Export Citation
  • Döös, K., and D. J. Webb, 1994: The Deacon cell and the other meridional cells in the Southern Ocean. J. Phys. Oceanogr., 24 , 429442.

    • Search Google Scholar
    • Export Citation
  • Dutay, J-C., and Coauthors, 2002: Evaluation of ocean model ventilation with CFC-11: Comparison of 13 global ocean models. Ocean Modell., 4 , 89120.

    • Search Google Scholar
    • Export Citation
  • Fichefet, T., and M. A. Morales Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102 , 1260912646.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16 , 696705.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and A. Tandon, 1997: The effects on water mass formation of surface and mixed layer time-dependence and entrainment fluxes. Deep-Sea Res. I, 44 , 19912006.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., K. Speer, and E. Tragou, 1995: The relationship between water mass formation and the surface buoyancy flux, with application to Phillips’ Red Sea model. J. Phys. Oceanogr., 25 , 16961705.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Godfrey, J. S., 1996: The effect of the Indonesian Throughflow on ocean circulation and heat exchange with the atmosphere: A review. J. Geophys. Res., 101 , 1221712238.

    • Search Google Scholar
    • Export Citation
  • Goodman, P. J., 1998: The role of North Atlantic Deep Water formation in an OGCM’s ventilation and thermohaline circulation. J. Phys. Oceanogr., 28 , 17591785.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91 , 50375046.

  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1 , 241248.

  • Hasumi, H., and N. Suginohara, 1999: Atlantic deep circulation controlled by heating in the Southern Ocean. Geophys. Res. Lett., 26 , 18731876.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., and T. J. McDougall, 1998: Meridional overturning and dianeutral transport in a z-coordinate ocean model including eddy-induced advection. J. Phys. Oceanogr., 28 , 12051223.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29 , 727746.

  • Huang, R. X., and B. Qiu, 1994: Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. J. Phys. Oceanogr., 24 , 16081622.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., 2007: The role of Southern Ocean in the global thermohaline circulation inferred from an OGCM. Ph.D. thesis, Université de la Bretagne Occidentale, 206 pp.

  • Iudicone, D., K. B. Rodgers, R. Schopp, and G. Madec, 2007: An exchange window for the injection of Antarctic Intermediate Water into the South Pacific. J. Phys. Oceanogr., 37 , 3149.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, and T. J. McDougall, 2008a: Water-mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38 , 13571376.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., S. Speich, G. Madec, and B. Blanke, 2008b: The global conveyor belt from a Southern Ocean perspective. J. Phys. Oceanogr., 38 , 14011425.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27 , 237263.

  • Josey, S. A., E. C. Kent, and P. K. Taylor, 1999: New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J. Climate, 12 , 28562880.

    • Search Google Scholar
    • Export Citation
  • Karsten, R. H., and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32 , 33153327.

    • Search Google Scholar
    • Export Citation
  • Karstensen, J., and D. Quadfasel, 2002: Formation of Southern Hemisphere thermocline waters: Water mass conversion and subduction. J. Phys. Oceanogr., 32 , 30203038.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., S. Drijfhout, J. Marotzke, and J. R. Scott, 2003: Sensitivity of basin-wide meridional overturning to diapycnal diffusion and remote wind forcing in an idealized Atlantic–Southern Ocean geometry. J. Phys. Oceanogr., 33 , 249266.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., S. Drijfhout, J. Marotzke, and J. R. Scott, 2004: Remote wind-driven overturning in the absence of the Drake Passage effect. J. Phys. Oceanogr., 34 , 10361049.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., J. Flückiger, T. F. Stocker, and A. Timmermann, 2004: Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature, 430 , 851856.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and A. J. G. Nurser, 2001: Ocean surface water mass transformation. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 317–336.

    • Search Google Scholar
    • Export Citation
  • Macdonald, A. M., and C. Wunsch, 1996: An estimate of global ocean circulation and heat fluxes. Nature, 382 , 436439.

  • Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1998: OPA 8.1 Ocean General Circulation Model reference manual. Notes Techniques du Pôle de Modélisation 11, Institut Pierre Simon Laplace, 91 pp.

  • Manizza, M., C. Le Quéré, A. J. Watson, and E. T. Buitenhuis, 2005: Bio-optical feedbacks among phytoplankton, upper ocean physics, and sea-ice in a global model. Geophys. Res. Lett., 32 .L05603, doi:10.1029/2004GL020778.

    • Search Google Scholar
    • Export Citation
  • Marsh, R., 2000: Cabbeling due to isopycnal mixing in isopycnic coordinate models. J. Phys. Oceanogr., 30 , 17571775.

  • Marsh, R., A. J. G. Nurser, A. P. Megann, and A. L. New, 2000: Water mass transformation in the Southern Ocean of a global isopycnic coordinate GCM. J. Phys. Oceanogr., 30 , 10131045.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., and A. J. G. Nurser, 1992: Fluid dynamics of oceanic thermocline ventilation. J. Phys. Oceanogr., 22 , 583595.

  • Marshall, J. C., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33 , 23412354.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., A. J. G. Nurser, and R. G. Williams, 1993: Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr., 23 , 13151329.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water-mass transformation rates. Deep-Sea Res. I, 46 , 545572.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36 , 18061821.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1987: Neutral surfaces. J. Phys. Oceanogr., 17 , 19501964.

  • Nurser, A. J. G., R. Marsh, and R. G. Williams, 1999: Diagnosing water mass formation from air–sea fluxes and surface mixing. J. Phys. Oceanogr., 29 , 14681487.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth III, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42 , 641673.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., S. S. Jacobs, A. L. Gordon, and M. Visbeck, 2001: Cooling and ventilating the Abyssal Ocean. Geophys. Res. Lett., 28 , 29232926.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., and M. H. England, 1997: Influence of Southern Hemisphere winds on North Atlantic Deep Water flow. J. Phys. Oceanogr., 27 , 20402054.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and M. H. England, 2002: Ekman transport dominates local air–sea fluxes in driving variability of Subantarctic Mode Water. J. Phys. Oceanogr., 32 , 13081321.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., C. Hughes, and D. Olbers, 2001: The Antarctic circumpolar system. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 271–302.

    • Search Google Scholar
    • Export Citation
  • Rio, M-H., and F. Hernandez, 2004: A mean dynamic topography computed over the World Ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109 .C12032, doi:10.1029/2003JC002226.

    • Search Google Scholar
    • Export Citation
  • Robbins, P. E., and J. M. Toole, 1997: The dissolved silica budget as a constraint on the meridional overturning circulation of the Indian Ocean. Deep-Sea Res., 44 , 879906.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., and G. Madec, 2000: Salt conservation, free surface, and varying volume: A new formulation for ocean general circulation models. J. Geophys. Res., 105 , 2392723942.

    • Search Google Scholar
    • Export Citation
  • Schmitz JR, W. J., 1996a: On the World Ocean circulation. Vol. I: Some global features/North Atlantic circulation. Tech. Rep. WHOI-96-O3, Woods Hole Oceanographic Institute, 140 pp.

  • Schmitz JR, W. J., 1996b: On the World Ocean circulation. Vol. II: The Pacific and Indian Oceans/A global update. Tech. Rep. WHOI-96-08, Woods Hole Oceanographic Institute, 237 pp.

  • Scott, J. R., and J. Marotzke, 2002: The location of diapycnal mixing and the meridional overturning circulation. J. Phys. Oceanogr., 32 , 35783595.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6 , 245263.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2000: Estimates of area-averaged diapycnal fluxes from basin-scale budgets. J. Phys. Oceanogr., 30 , 23202341.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001a: Circulation, renewal, and modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr., 31 , 10051030.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., and S. R. Rintoul, 2001b: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 30 , 143173.

    • Search Google Scholar
    • Export Citation
  • Speer, K., and E. Tziperman, 1992: Rates of water mass formation in the North Atlantic Ocean. J. Phys. Oceanogr., 22 , 93104.

  • Speer, K., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30 , 32123222.

  • Stammer, D., and Coauthors, 2002: Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107 .3118, doi:10.1029/2001JC000888.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76 , 30513055.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., M. W. Johnson, and R. H. Fleming, 1942: The Oceans: Their Physics, Chemistry, and General Biology. Prentice Hall, 1087 pp.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33 , 530560.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16 , 32133226.

    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1997: Water mass formation from thermodynamics: A framework for examining compatibility with dynamics. International WOCE Newsletter, No. 28, WOCE International Project Office, Southampton, United Kingdom, 666–667.

    • Search Google Scholar
    • Export Citation
  • Taylor, H., A. L. Gordon, and E. Molinelli, 1978: Climate characteristics of the Antarctic Polar Front zone. J. Geophys. Res., 83 , 45724578.

    • Search Google Scholar
    • Export Citation
  • Timmermann, R., H. Goosse, G. Madec, T. Fichefet, C. Ethe, and V. Duliere, 2005: On the representation of high latitude processes in the ORCA-LIM global coupled sea ice–ocean model. Ocean Modell., 8 , 175201.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1993: Is the magnitude of the deep outflow from the Atlantic Ocean actually governed by Southern Hemisphere winds? The Global Carbon Cycle, M. Heimann, Ed., NATO ASI Series, Springer-Verlag, 303–331.

  • Toggweiler, J. R., and B. Samuels, 1998: On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28 , 18321852.

    • Search Google Scholar
    • Export Citation
  • Tomczak, M., and J. S. Godfrey, 1994: Regional Oceanography: An Introduction. Pergamon, 422 pp.

  • Toole, J. M., 1981: Sea ice, winter convection, and the temperature minimum layer in the Southern Ocean. J. Geophys. Res., 86 , 80378047.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., and A. Warren, 1993: A hydrographic section across the subtropical south Indian Ocean. Deep-Sea Res., 40 , 19732019.

  • Treguier, A. M., I. M. Held, and V. D. Larichev, 1997: On the parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 27 , 567580.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 34333443.

  • Tsujino, H., and N. Suginohara, 1999: Thermohaline circulation enhanced by wind forcing. J. Phys. Oceanogr., 29 , 15061516.

  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34 , 187195.

  • Warren, B. A., J. H. LaCasce, and P. E. Robbins, 1996: On the obscurantist physics of “form drag” in theorizing about the Circumpolar Current. J. Phys. Oceanogr., 26 , 22972301.

    • Search Google Scholar
    • Export Citation
  • Webb, D. J., and N. Suginohara, 2001: Vertical mixing in the ocean. Nature, 409 , 37.

  • Wijffels, S., 2001: Ocean transport of fresh water. Ocean Circulation and Climate: Observing and Modelling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 475–488.

    • Search Google Scholar
    • Export Citation
  • Williams, R. G., M. A. Spall, and J. C. Marshall, 1995: Does Stommel’s mixed layer demon work? J. Phys. Oceanogr., 25 , 30893102.

  • Woods, 1985: Physics of thermocline ventilation. Coupled Ocean—Atmosphere Models, J. C. J. Nihoul, Ed., Elsevier, 543–590.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 , 281314.

    • Search Google Scholar
    • Export Citation
  • You, Y., 1998: Dianeutral mixing and transformation of Antarctic Intermediate Water in the Indian Ocean. J. Geophys. Res., 103 , 3094130972.

    • Search Google Scholar
    • Export Citation
  • You, Y., 2002: Quantitative estimate of Antarctic Intermediate Water contributions from the Drake Passage and the southwest Indian Ocean to the South Atlantic. J. Geophys. Res., 107 .3031, doi:10.1029/2001JC000880.

    • Search Google Scholar
    • Export Citation
  • You, Y., T. J. McDougall, and R. W. Schmitt, 1995: Dianeutral motion, water-mass conversion, and nonlinear effects on the density ratio in the Pacific thermocline. J. Phys. Oceanogr., 25 , 18911904.

    • Search Google Scholar
    • Export Citation
  • Zhang, H-M., and L. D. Talley, 1998: Heat and buoyancy budgets and mixing rates in the upper thermocline. J. Phys. Oceanogr., 28 , 19611978.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1099 628 243
PDF Downloads 395 114 14