An Energy-Constrained Parameterization of Eddy Buoyancy Flux

Paola Cessi Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Paola Cessi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A parameterization for eddy buoyancy fluxes for use in coarse-grid models is developed and tested against eddy-resolving simulations. The development is based on the assumption that the eddies are adiabatic (except near the surface) and the observation that the flux of buoyancy is affected by barotropic, depth-independent eddies. Like the previous parameterizations of Gent and McWilliams (GM) and Visbeck et al. (VMHS), the horizontal flux of a tracer is proportional to the local large-scale horizontal gradient of the tracer through a transfer coefficient assumed to be given by the product of a typical eddy velocity scale and a typical mixing length. The proposed parameterization differs from GM and VMHS in the selection of the eddy velocity scale, which is based on the kinetic energy balance of baroclinic eddies. The three parameterizations are compared to eddy-resolving computations in a variety of forcing configurations and for several sets of parameters. The VMHS and the energy balance parameterizations perform best in the tests considered here.

Corresponding author address: Paola Cessi, 9500 Gilman Drive, UCSD-0213, La Jolla, CA 92093-0213. Email: pcessi@ucsd.edu

Abstract

A parameterization for eddy buoyancy fluxes for use in coarse-grid models is developed and tested against eddy-resolving simulations. The development is based on the assumption that the eddies are adiabatic (except near the surface) and the observation that the flux of buoyancy is affected by barotropic, depth-independent eddies. Like the previous parameterizations of Gent and McWilliams (GM) and Visbeck et al. (VMHS), the horizontal flux of a tracer is proportional to the local large-scale horizontal gradient of the tracer through a transfer coefficient assumed to be given by the product of a typical eddy velocity scale and a typical mixing length. The proposed parameterization differs from GM and VMHS in the selection of the eddy velocity scale, which is based on the kinetic energy balance of baroclinic eddies. The three parameterizations are compared to eddy-resolving computations in a variety of forcing configurations and for several sets of parameters. The VMHS and the energy balance parameterizations perform best in the tests considered here.

Corresponding author address: Paola Cessi, 9500 Gilman Drive, UCSD-0213, La Jolla, CA 92093-0213. Email: pcessi@ucsd.edu

Save
  • Cessi, P., 2007: Regimes of thermocline scaling: The interaction of wind stress and surface buoyancy. J. Phys. Oceanogr., 37 , 20092021.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., and M. Fantini, 2004: The eddy-driven thermocline. J. Phys. Oceanogr., 34 , 26422658.

  • Cessi, P., W. R. Young, and J. A. Polton, 2006: Control of large-scale heat transport by small-scale mixing. J. Phys. Oceanogr., 36 , 18771894.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 , 3352.

  • Gallego, B., P. Cessi, and J. C. McWilliams, 2004: The Antarctic Circumpolar Current in equilibrium. J. Phys. Oceanogr., 34 , 15711587.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gent, P., J. Willerbrand, T. McDougall, and J. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25 , 463474.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21 , 499528.

    • Search Google Scholar
    • Export Citation
  • Green, J., 1970: Transfer properties of the large-scale eddies in the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96 , 157185.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28 , 831841.

  • Haine, T. W. N., and J. Marshall, 1998: Gravitational, symmetric and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr., 28 , 634658.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1 , 241248.

  • Henning, C. C., and G. K. Vallis, 2005: The effects of mesoscale eddies on the stratification and transport of an ocean with a circumpolar channel. J. Phys. Oceanogr., 35 , 880896.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1986: Estimation of oceanic eddy transports from satellite altimetry. Nature, 323 , 243244.

  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32 , 33283345.

  • Karsten, R., H. Jones, and J. Marshall, 2002: The role of eddy transfer in setting the stratification and transport of a circumpolar current. J. Phys. Oceanogr., 32 , 3954.

    • Search Google Scholar
    • Export Citation
  • Kuo, A., A. Plumb, and J. Marshall, 2005: Transformed Eulerian-mean theory. Part II: Potential vorticity homogenization, and the equilibrium of a wind- and buoyancy-driven zonal flow. J. Phys. Oceanogr., 35 , 175187.

    • Search Google Scholar
    • Export Citation
  • Larichev, V. D., and I. M. Held, 1995: Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr., 25 , 22852297.

    • Search Google Scholar
    • Export Citation
  • Maltrud, M. E., and J. L. McClean, 2005: An eddy resolving global 1/10° ocean simulation. Ocean Modell., 8 , 3154.

  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33 , 23412354.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., H. Jones, R. H. Karsten, and R. Wardle, 2002: Can eddies set ocean stratification? J. Phys. Oceanogr., 32 , 2638.

  • Maximenko, N. A., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32 .L12607, doi:10.1029/2005GL022728.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res. I, 24 , 12591262.

  • Smith, K. S., and G. K. Vallis, 2002: The scales of equilibration of mid-ocean eddies: Forced-dissipative flows. J. Phys. Oceanogr., 32 , 16991720.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., G. Boccaletti, C. C. Hennings, I. Marinov, C. Y. Tam, I. M. Held, and G. K. Vallis, 2002: Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech., 469 , 1348.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27 , 17431769.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., C. Wunsch, and K. Ueyoshi, 2006: Temporal changes in ocean eddy transports. J. Phys. Oceanogr., 36 , 543550.

  • Stone, P. H., 1972: A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci., 29 , 405418.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and W. R. Young, 2006: Scaling baroclinic eddy fluxes: Vortices and energy balance. J. Phys. Oceanogr., 36 , 720738.

  • Treguier, A. M., and B. L. Hua, 1988: Influence of bottom topography on stratified quasi-geostrophic turbulence in the ocean. Geophys. Astophys. Fluid Dyn., 43 , 265305.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, T. Haine, and M. A. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27 , 381402.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1999: Where do ocean eddy heat fluxes matter? J. Geophys. Res., 104 , 1323513249.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 336 92 8
PDF Downloads 294 92 8