Western Arctic Shelfbreak Eddies: Formation and Transport

Michael A. Spall Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Michael A. Spall in
Current site
Google Scholar
PubMed
Close
,
Robert S. Pickart Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Robert S. Pickart in
Current site
Google Scholar
PubMed
Close
,
Paula S. Fratantoni Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Paula S. Fratantoni in
Current site
Google Scholar
PubMed
Close
, and
Albert J. Plueddemann Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Albert J. Plueddemann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The mean structure and time-dependent behavior of the shelfbreak jet along the southern Beaufort Sea, and its ability to transport properties into the basin interior via eddies are explored using high-resolution mooring data and an idealized numerical model. The analysis focuses on springtime, when weakly stratified winter-transformed Pacific water is being advected out of the Chukchi Sea. When winds are weak, the observed jet is bottom trapped with a low potential vorticity core and has maximum mean velocities of O(25 cm s−1) and an eastward transport of 0.42 Sv (1 Sv ≡ 106 m3 s−1). Despite the absence of winds, the current is highly time dependent, with relative vorticity and twisting vorticity often important components of the Ertel potential vorticity. An idealized primitive equation model forced by dense, weakly stratified waters flowing off a shelf produces a mean middepth boundary current similar in structure to that observed at the mooring site. The model boundary current is also highly variable, and produces numerous strong, small anticyclonic eddies that transport the shelf water into the basin interior. Analysis of the energy conversion terms in both the mooring data and the numerical model indicates that the eddies are formed via baroclinic instability of the boundary current. The structure of the eddies in the basin interior compares well with observations from drifting ice platforms. The results suggest that eddies shed from the shelfbreak jet contribute significantly to the offshore flux of heat, salt, and other properties, and are likely important for the ventilation of the halocline in the western Arctic Ocean. Interaction with an anticyclonic basin-scale circulation, meant to represent the Beaufort gyre, enhances the offshore transport of shelf water and results in a loss of mass transport from the shelfbreak jet.

Corresponding author address: Michael A. Spall, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: mspall@whoi.edu

Abstract

The mean structure and time-dependent behavior of the shelfbreak jet along the southern Beaufort Sea, and its ability to transport properties into the basin interior via eddies are explored using high-resolution mooring data and an idealized numerical model. The analysis focuses on springtime, when weakly stratified winter-transformed Pacific water is being advected out of the Chukchi Sea. When winds are weak, the observed jet is bottom trapped with a low potential vorticity core and has maximum mean velocities of O(25 cm s−1) and an eastward transport of 0.42 Sv (1 Sv ≡ 106 m3 s−1). Despite the absence of winds, the current is highly time dependent, with relative vorticity and twisting vorticity often important components of the Ertel potential vorticity. An idealized primitive equation model forced by dense, weakly stratified waters flowing off a shelf produces a mean middepth boundary current similar in structure to that observed at the mooring site. The model boundary current is also highly variable, and produces numerous strong, small anticyclonic eddies that transport the shelf water into the basin interior. Analysis of the energy conversion terms in both the mooring data and the numerical model indicates that the eddies are formed via baroclinic instability of the boundary current. The structure of the eddies in the basin interior compares well with observations from drifting ice platforms. The results suggest that eddies shed from the shelfbreak jet contribute significantly to the offshore flux of heat, salt, and other properties, and are likely important for the ventilation of the halocline in the western Arctic Ocean. Interaction with an anticyclonic basin-scale circulation, meant to represent the Beaufort gyre, enhances the offshore transport of shelf water and results in a loss of mass transport from the shelfbreak jet.

Corresponding author address: Michael A. Spall, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: mspall@whoi.edu

Save
  • Aagaard, K., 1984: The Beaufort Undercurrent. The Alaskan Beaufort Sea: Ecosystems and Environments, P. W. Barnes, D. M. Schell, and E. Reimnitz, Eds., Academic Press, 47–71.

    • Search Google Scholar
    • Export Citation
  • Aagaard, K., and E. C. Carmack, 1994: The Arctic and climate. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., No. 85, Amer. Geophys. Union, 4–20.

    • Search Google Scholar
    • Export Citation
  • Aagaard, K., L. K. Coachman, and E. C. Carmack, 1981: On the halocline of the Arctic Ocean. Deep-Sea Res., 28 , 529545.

  • Berloff, P. S., and J. C. McWilliams, 1999: Quasigeostrophic dynamics of the western boundary current. J. Phys. Oceanogr., 29 , 26072634.

    • Search Google Scholar
    • Export Citation
  • Bush, A. B. G., J. C. McWilliams, and W. R. Peltier, 1996: The formation of oceanic eddies in symmetric and asymmetric jets. Part II: Late time evolution and coherent vortex formation. J. Phys. Oceanogr., 26 , 18251848.

    • Search Google Scholar
    • Export Citation
  • Chao, S-Y., and P-T. Shaw, 1996: Initialization, asymmetry, and spindown of Arctic eddies. J. Phys. Oceanogr., 26 , 20762092.

  • Chao, S-Y., and P-T. Shaw, 1998: Eddy maintenance and attrition in a vertically sheared current under Arctic ice. J. Phys. Oceanogr., 28 , 24272443.

    • Search Google Scholar
    • Export Citation
  • Chao, S-Y., and P-T. Shaw, 2002: A numerical investigation of slanted convection and subsurface anticyclone generation in an Arctic baroclinic current system. J. Geophys. Res., 107 .3019, doi:10.1029/2001JC000786.

    • Search Google Scholar
    • Export Citation
  • Chao, S-Y., and P-T. Shaw, 2003a: A numerical study of dense water outflows and halocline anticyclones in an Arctic baroclinic slope current. J. Geophys. Res., 108 .3226, doi:10.1029/2002JC001473.

    • Search Google Scholar
    • Export Citation
  • Chao, S-Y., and P-T. Shaw, 2003b: Heton shedding from submarine-canyon plumes in an Arctic boundary current system: Sensitivity to the undercurrent. J. Phys. Oceanogr., 33 , 20322044.

    • Search Google Scholar
    • Export Citation
  • Coachman, L. K., K. Aagaard, and R. B. Tripp, 1975: Bering Strait: The Regional Physical Oceanography. University of Washington Press, 172 pp.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1988a: Observations of small eddies in the Beaufort Sea. J. Geophys. Res., 93 , 66696684.

  • D’Asaro, E. A., 1988b: Generation of submesoscale vortices: A new mechanism. J. Geophys. Res., 93 , 66856693.

  • Fratantoni, P. S., S. Zimmerman, R. S. Pickart, and M. Swartz, 2006: Western Arctic Shelf-Basin Interactions Experiment: Processing and calibration of moored profiler data from the Beaufort shelf edge mooring array. Woods Hole Oceanographic Institution Tech. Rep. WHOI-2006-15, 34 pp.

  • Hall, M. M., 1994: Synthesizing the Gulf Stream thermal structure from XBT data. J. Phys. Oceanogr., 24 , 22782287.

  • Hart, J. E., and P. D. Killworth, 1976: Open ocean baroclinic instability in the Arctic. Deep-Sea Res., 23 , 637645.

  • Hogg, N. G., and H. M. Stommel, 1985: The heton, an elementary interaction between discrete baroclinic geostrophic vortices and its implications concerning eddy heat-flow. Proc. Roy. Soc. London, A397 , 120.

    • Search Google Scholar
    • Export Citation
  • Hunkins, K. L., 1974: Subsurface eddies in the Arctic Ocean. Deep-Sea Res., 21 , 10171033.

  • Krishfield, R. A., and A. J. Pluddemann, 2002: Eddies in the Arctic Ocean from IOEB ADCP data. Woods Hole Oceanographic Institution Tech. Rep. WHOI-2002-09, 144 pp.

  • Kulikov, E. A., E. C. Carmack, and R. W. Macdonald, 1998: Flow variability at the continental shelf break of the Mackenzie Shelf in the Beaufort Sea. J. Geophys. Res., 103 , 1272512741.

    • Search Google Scholar
    • Export Citation
  • Llinas, L., R. S. Pickart, J. T. Mathis, and S. L. Smith, 2008: The effects of eddy transport on zooplankton biomass and community composition in the western Arctic. Deep-Sea Res. II, in press.

    • Search Google Scholar
    • Export Citation
  • Manley, T. O., and K. Hunkins, 1985: Mesoscale eddies of the Arctic Ocean. J. Geophys. Res., 90 , 49114930.

  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and non-hydrostatic ocean modeling. J. Geophys. Res., 102 , 57335752.

    • Search Google Scholar
    • Export Citation
  • Mathis, J. T., R. S. Pickart, D. A. Hansell, D. Kadko, and N. R. Bates, 2007: Eddy transport of organic carbon and nutrients from the Chukchi Shelf into the deep Arctic basin. J. Geophys. Res., 112 .C05011, doi:10.1029/2006JC003899.

    • Search Google Scholar
    • Export Citation
  • Melling, H., 1998: Hydrographic changes in the Canada basin of the Arctic ocean, 1979–1996. J. Geophys. Res., 103 , 76377645.

  • Mountain, D. G., L. K. Coachman, and K. Aagaard, 1976: On the flow through Barrow Canyon. J. Phys. Oceanogr., 6 , 461470.

  • Muench, R. D., J. D. Schumacher, and S. A. Salo, 1988: Winter currents and hydrographic conditions on the northern central Bering Sea shelf. J. Geophys. Res., 93 , 516526.

    • Search Google Scholar
    • Export Citation
  • Muench, R. D., J. T. Gunn, T. E. Whitledge, P. Schlosser, and W. Smethie Jr., 2000: An Arctic Ocean cold core eddy. J. Geophys. Res., 105 , 2399724006.

    • Search Google Scholar
    • Export Citation
  • Münchow, A., and E. Carmack, 1997: Synoptic flow and density observations near an Arctic shelfbreak. J. Phys. Oceanogr., 27 , 14021419.

    • Search Google Scholar
    • Export Citation
  • Münchow, A., R. S. Pickart, T. J. Weingartner, R. A. Woodgate, and D. Kadko, 2006: Arctic boundary currents over the Chukchi and Beaufort slope seas: Observational snapshots, transports, scales, and spatial variability from ADCP surveys. Eos, Trans. Amer. Geophys. Union, 87 .Ocean Science Meeting Suppl. Abstract OS33N-03.

    • Search Google Scholar
    • Export Citation
  • Mundt, M. D., N. H. Brummell, and J. E. Hart, 1995: Linear and nonlinear baroclinic instability with rigid sidewalls. J. Fluid Mech., 291 , 109138.

    • Search Google Scholar
    • Export Citation
  • Newton, J. L., K. Aagaard, and L. K. Coachman, 1974: Baroclinic eddies in the Arctic Ocean. Deep-Sea Res., 21 , 707719.

  • Nikolopoulos, A., R. S. Pickart, P. S. Fratantoni, K. Shimada, D. J. Torres, and E. P. Jones, 2008: The western Arctic boundary current at 152W: Structure, variability, and transport. Deep-Sea Res. II, in press.

    • Search Google Scholar
    • Export Citation
  • Ou, H. W., and A. L. Gordon, 1986: Spin-down of baroclinic eddies under sea ice. J. Geophys. Res., 91 , 76237630.

  • Paquette, R. G., and R. H. Bourke, 1974: Observations on the coastal current of Arctic Alaska. J. Mar. Res., 32 , 195207.

  • Pedlosky, J., 1985: The instability of continuous heton clouds. J. Atmos. Sci., 42 , 14771486.

  • Pickart, R. S., 2004: Shelfbreak circulation in the Alaskan Beaufort Sea: Mean structure and variability. J. Geophys. Res., 109 .C04024, doi:10.1029/2003JC001912.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., T. J. Weingartner, L. J. Pratt, S. Zimmermann, and D. J. Torres, 2005: Flow of winter-transformed Pacific water into the Western Arctic. Deep-Sea Res. II, 52 , 31753198.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., R. Krishfield, T. Takizawa, K. Hatakeyama, and S. Honjo, 1998: Upper ocean velocities in the Beaufort Gyre. Geophys. Res. Lett., 25 , 183186.

    • Search Google Scholar
    • Export Citation
  • Roach, A. T., A. Aagaard, C. H. Pease, S. A. Salo, T. Weingartner, V. Pavlov, and M. Kulakov, 1995: Direct measurements of transport and water properties through Bering Strait. J. Geophys. Res., 100 , 1844318457.

    • Search Google Scholar
    • Export Citation
  • Shimada, K., and A. Kubokawa, 1997: Nonlinear evolution of linearly unstable barotropic boundary currents. J. Phys. Oceanogr., 27 , 13261348.

    • Search Google Scholar
    • Export Citation
  • Shimada, K., E. C. Carmack, K. Hatakeyama, and T. Takizawa, 2001: Varieties of shallow temperature maximum waters in the Western Canadian Basin of the Arctic Ocean. Geophys. Res. Lett., 28 , 34413444.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91 , 99164.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 1995: Frontogenesis, subduction, and cross-front exchange at upper ocean fronts. J. Geophys. Res., 100 , 25432557.

  • Spall, M. A., and J. Pedlosky, 2008: Lateral coupling in baroclinically unstable flows. J. Phys. Oceanogr., 38 , 12671277.

  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14 , 20792087.

    • Search Google Scholar
    • Export Citation
  • Steele, M., J. Morrison, W. Ermold, I. Rigor, and M. Ortmeyer, 2004: Circulation of summer Pacific halocline water in the Arctic Ocean. J. Geophys. Res., 109 .C02027, doi:10.1029/2003JC002009.

    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., 1992: Maintenance of quick fluid rotation in the cores of long-lived oceanic eddies. J. Mar. Syst., 3 , 489496.

  • Timmerman, M-L., J. Toole, A. Proshutinsky, R. Krishfield, and A. Plueddemann, 2008: Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers. J. Phys. Oceanogr., 38 , 133145.

    • Search Google Scholar
    • Export Citation
  • Weingartner, T. J., D. J. Cavalieri, K. Aagaard, and Y. Sasaki, 1998: Circulation, dense water formation, and outflow on the northeast Chukchi shelf. J. Geophys. Res., 103 , 76477661.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 985 343 21
PDF Downloads 713 269 11