Physics of “Saturation-Based” Dissipation Functions Proposed for Wave Forecast Models

Alexander V. Babanin Swinburne University of Technology, Melbourne, Australia

Search for other papers by Alexander V. Babanin in
Current site
Google Scholar
PubMed
Close
and
AndréJ. van der Westhuysen Deltares, Delft Hydraulics, Delft, Netherlands

Search for other papers by AndréJ. van der Westhuysen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The dissipation term is one of the three most important source functions of the radiative transfer equation employed by all spectral wave models to predict the wave spectrum. In this paper, the issue of physics of such dissipation functions is discussed. It is argued that the physics presently utilized in the models do not adequately describe currently known features of the wave dissipation process, and the dissipation functions, to a great extent, remain a residual tuning term in spite of important experimental progress in wave breaking studies. A recently suggested “saturation-based” dissipation function and its connections with the experimental physics are analyzed in detail.

Corresponding author address: Alexander Babanin, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, P.O. Box 218, Hawthorn, Melbourne, VIC 3122, Australia. Email: ababanin@swin.edu.au

Abstract

The dissipation term is one of the three most important source functions of the radiative transfer equation employed by all spectral wave models to predict the wave spectrum. In this paper, the issue of physics of such dissipation functions is discussed. It is argued that the physics presently utilized in the models do not adequately describe currently known features of the wave dissipation process, and the dissipation functions, to a great extent, remain a residual tuning term in spite of important experimental progress in wave breaking studies. A recently suggested “saturation-based” dissipation function and its connections with the experimental physics are analyzed in detail.

Corresponding author address: Alexander Babanin, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, P.O. Box 218, Hawthorn, Melbourne, VIC 3122, Australia. Email: ababanin@swin.edu.au

Save
  • Alves, J. H. G. M., and M. L. Banner, 2003: Performance of a saturation-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. J. Phys. Oceanogr., 33 , 12741298.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., T. H. C. Herbers, G. P. van Vledder, K. P. Watts, R. Jensen, and H. C. Graber, 2007: Swell and slanting-fetch effects on wind wave growth. J. Phys. Oceanogr., 37 , 908931.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and Yu P. Soloviev, 1998: Field investigation of transformation of the wind wave frequency spectrum with fetch and the stage of development. J. Phys. Oceanogr., 28 , 563576.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and I. R. Young, 2005: Two-phase behaviour of the spectral dissipation of wind waves. Proc. Ocean Waves Measurement and Analysis, Fifth Int. Symp. on WAVES2005, Paper 51, Madrid, Spain, CEDEX and CORPI of ASCI, 11 pp.

  • Babanin, A. V., I. R. Young, and M. L. Banner, 2001: Breaking probabilities for dominant surface waves on water of finite constant depth. J. Geophys. Res., 106C , 1165911676.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., M. L. Banner, I. R. Young, and M. A. Donelan, 2007a: Wave-follower field measurements of the wind-input spectral function. Part III: Parameterization of the wind-input enhancement due to wave breaking. J. Phys. Oceanogr., 37 , 27642775.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., D. Chalikov, I. R. Young, and I. Savelyev, 2007b: Predicting the breaking onset of surface water waves. Geophys. Res. Lett., 34 .L07605, doi:10.1029/2006GL029135.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and I. R. Young, 1994: Modeling spectral dissipation in the evolution of wind waves. Part I: Assessment of existing model performance. J. Phys. Oceanogr., 24 , 15501571.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and R. P. Morison, 2006: On modeling spectral dissipation due to wave breaking for ocean wind waves. Proc. Ninth Int. Workshop on Wave Hindcasting and Forecasting, Victoria, BC, Canada, Environment Canada, U.S. Army Engineer Research and Development Center’s Coastal and Hydraulics Laboratory, and the WMO/IOC Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM), 13 pp.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., A. V. Babanin, and I. R. Young, 2000: Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr., 30 , 31453160.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., J. R. Gemmrich, and D. M. Farmer, 2002: Multiscale measurements of ocean wave breaking probability. J. Phys. Oceanogr., 32 , 33643375.

    • Search Google Scholar
    • Export Citation
  • Dold, J. W., and D. H. Peregrine, 1986: Water-wave modulation. Proc. 20th Int. Conf. on Coastal Engineering, Taipei, Taiwan, ASCE, 163–175.

  • Donelan, M. A., 2001: A nonlinear dissipation function due to wave breaking. Proc. ECMWF Workshop on Ocean Wave Forecasting, Reading, United Kingdom, ECMWF, 87–94.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., and Y. Yuan, 1994: Wave dissipation by surface processes. Dynamics and Modelling of Ocean Waves, G. J. Komen et al., Eds., Cambridge University Press, 143–155.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., M. S. Longuet-Higgins, and J. S. Turner, 1972: Whitecaps. Nature, 239 , 449451.

  • Donelan, M. A., A. V. Babanin, I. R. Young, and M. L. Banner, 2006: Wave-follower measurements of the wind-input spectral function. Part II: Parameterization of the wind input. J. Phys. Oceanogr., 36 , 16721688.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1974: On the spectral dissipation of ocean waves due to white capping. Bound.-Layer Meteor., 6 , 107127.

  • Hwang, P. A., and D. W. Wang, 2004: An empirical investigation of source term balance of small scale surface waves. Geophys. Res. Lett., 31 .L15301, doi:10.1029/2004GL020080.

    • Search Google Scholar
    • Export Citation
  • Kahma, K., and C. J. Calkoen, 1992: Reconciling discrepancies in the observed growth of wind-generated waves. J. Phys. Oceanogr., 22 , 13891405.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., S. Hasslemann, and K. Hasselmann, 1984: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14 , 12711285.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1984: Statistical properties of wave groups in a random sea state. Philos. Trans. Roy. Soc. London B Biol. Sci., A312 , 219250.

    • Search Google Scholar
    • Export Citation
  • Manasseh, R., A. V. Babanin, C. Forbes, K. Rickards, I. Bobevski, and A. Ooi, 2006: Passive acoustic determination of wave-breaking events and their severity across the spectrum. J. Atmos. Oceanic Technol., 23 , 599618.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1958: The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech., 4 , 426434.

  • Phillips, O. M., 1984: On the response of short ocean wave components at a fixed wavenumber to ocean current variations. J. Phys. Oceanogr., 14 , 14251433.

    • Search Google Scholar
    • Export Citation
  • Polnikov, V. G., 1991: A third generation spectral model for wind waves. Izv. Atmos. Oceanic Phys., 27 , 615623.

  • Rapp, R. J., and W. K. Melville, 1990: Laboratory measurements of deep-water breaking waves. Philos. Trans. Roy. Soc. London B Biol. Sci., A331 , 735800.

    • Search Google Scholar
    • Export Citation
  • Snyder, R. L., F. W. Dobson, J. A. Elliot, and R. B. Long, 1981: Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102 , 159.

    • Search Google Scholar
    • Export Citation
  • Stiassnie, M., Y. Agnon, and P. A. E. M. Janssen, 2007: Temporal and spatial growth of wind waves. J. Phys. Oceanogr., 37 , 106114.

  • Tolman, H. L., and D. Chalikov, 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26 , 24972518.

  • van der Westhuysen, A. J., M. Zijlema, and J. A. Battjes, 2007: Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coast. Eng., 54 , 151170.

    • Search Google Scholar
    • Export Citation
  • WISE Group, 2007: Wave modelling—The state of the art. Prog. Oceanogr., 75 , 603674.

  • Yan, L., 1987: An improved wind input source term for third generation ocean wave modeling. Royal Netherlands Meteorological Institute Scientific Rep. WR 87-8, 10 pp.

  • Young, I. R., and A. V. Babanin, 2006: Spectral distribution of energy dissipation of wind-generated waves due to dominant wave breaking. J. Phys. Oceanogr., 36 , 376394.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 169 40 2
PDF Downloads 112 38 0