Observations of the Dispersion Characteristics and Meridional Sea Level Structure of Equatorial Waves in the Pacific Ocean

J. Thomas Farrar Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by J. Thomas Farrar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Spectral techniques applied to altimetry data are used to examine the dispersion relation and meridional sea level structure of wavelike variability with periods of about 20 to 200 days in the equatorial Pacific Ocean. Zonal wavenumber–frequency power spectra of sea surface height, when averaged over about 7°S–7°N, exhibit spectral peaks near the theoretical dispersion curves of first baroclinic-mode equatorial Kelvin and Rossby waves. There are distinct, statistically significant ridges of power near the first and second meridional-mode Rossby wave dispersion curves. Sea level variability near the theoretical Kelvin wave and first meridional-mode Rossby wave dispersion curves is dominantly (but not perfectly) symmetric about the equator, while variability near the theoretical second meridional-mode Rossby wave dispersion curve is dominantly antisymmetric. These results are qualitatively consistent with expectations from classical or shear-modified theories of equatorial waves.

The meridional structures of these modes resemble the meridional modes of equatorial wave theory, but there are some robust features of the meridional profiles that were not anticipated. The meridional sea level structure in the intraseasonal Kelvin wave band closely resembles the theoretically expected Gaussian profile, but sea level variability coherent with that at the equator is detected as far away as 11.75°S, possibly as a result of the forced nature of these Kelvin waves. Both first and second meridional-mode Rossby waves have larger amplitude in the Northern Hemisphere. The meridional sea level structure of tropical instability waves closely resembles that predicted by Lyman et al. using a model linearized about a realistic equatorial zonal current system.

Corresponding author address: J. Thomas Farrar, Woods Hole Oceanographic Institution, Mail Stop 29, Woods Hole, MA 02543. Email: jfarrar@whoi.edu

Abstract

Spectral techniques applied to altimetry data are used to examine the dispersion relation and meridional sea level structure of wavelike variability with periods of about 20 to 200 days in the equatorial Pacific Ocean. Zonal wavenumber–frequency power spectra of sea surface height, when averaged over about 7°S–7°N, exhibit spectral peaks near the theoretical dispersion curves of first baroclinic-mode equatorial Kelvin and Rossby waves. There are distinct, statistically significant ridges of power near the first and second meridional-mode Rossby wave dispersion curves. Sea level variability near the theoretical Kelvin wave and first meridional-mode Rossby wave dispersion curves is dominantly (but not perfectly) symmetric about the equator, while variability near the theoretical second meridional-mode Rossby wave dispersion curve is dominantly antisymmetric. These results are qualitatively consistent with expectations from classical or shear-modified theories of equatorial waves.

The meridional structures of these modes resemble the meridional modes of equatorial wave theory, but there are some robust features of the meridional profiles that were not anticipated. The meridional sea level structure in the intraseasonal Kelvin wave band closely resembles the theoretically expected Gaussian profile, but sea level variability coherent with that at the equator is detected as far away as 11.75°S, possibly as a result of the forced nature of these Kelvin waves. Both first and second meridional-mode Rossby waves have larger amplitude in the Northern Hemisphere. The meridional sea level structure of tropical instability waves closely resembles that predicted by Lyman et al. using a model linearized about a realistic equatorial zonal current system.

Corresponding author address: J. Thomas Farrar, Woods Hole Oceanographic Institution, Mail Stop 29, Woods Hole, MA 02543. Email: jfarrar@whoi.edu

Save
  • Bendat, J. S., and A. G. Piersol, 1986: Random Data: Analysis and Measurement Procedures. 2nd ed. Wiley, 566 pp.

  • Blandford, R., 1966: Mixed gravity-Rossby waves in the ocean. Deep-Sea Res., 13 , 941961.

  • Boulanger, J-P., and C. Menkes, 1995: Propagation and reflection of long equatorial waves in the Pacific Ocean during the 1992–1993 El Niño. J. Geophys. Res., 100 , 2504125059.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J-P., and C. Menkes, 1999: Long equatorial wave reflection in the Pacific Ocean from TOPEX/POSEIDON data during the 1992–1998 period. Climate Dyn., 15 , 205225.

    • Search Google Scholar
    • Export Citation
  • Boyd, J., 1982a: The influence of meridional shear on planetary waves. Part I: Nonsingular wind profiles. J. Atmos. Sci., 39 , 756769.

    • Search Google Scholar
    • Export Citation
  • Boyd, J., 1982b: The influence of meridional shear on planetary waves. Part II: Critical latitudes. J. Atmos. Sci., 39 , 770790.

  • Brossier, F., 1987: Numerical modeling of equatorial waves in the presence of a mean current. J. Phys. Oceanogr., 17 , 11001113.

  • Chelton, D., R. deSzoeke, M. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28 , 433460.

    • Search Google Scholar
    • Export Citation
  • Chelton, D., F. Wentz, C. Gentemann, R. deSzoeke, and M. Schlax, 2000: Satellite microwave SST observations of transequatorial tropical instability waves. Geophys. Res. Lett., 27 , 12391242.

    • Search Google Scholar
    • Export Citation
  • Chelton, D., M. Schlax, J. Lyman, and G. Johnson, 2003: Equatorially trapped Rossby waves in the presence of a meridionally sheared baroclinic flow in the Pacific Ocean. Prog. Oceanogr., 56 , 323380.

    • Search Google Scholar
    • Export Citation
  • Cravatte, S., J. Picaut, and G. Eldin, 2003: Second and first baroclinic Kelvin modes in the equatorial Pacific at intraseasonal timescales. J. Geophys. Res., 108 .3266, doi:10.1029/2002JC001511.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., J. Picaut, and G. Eldin, 1991: Equatorial Kelvin and Rossby waves evidenced in the Pacific Ocean through Geosat sea level and surface current anomaly. J. Geophys. Res., 96 , 32493262.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., J-P. Boulanger, F. Masia, and C. Menkes, 1994: Geosat-derived sea level and surface current anomalies in the equatorial Pacific during the 1986–1989 El Niño and La Niña. J. Geophys. Res., 99 , 2509325107.

    • Search Google Scholar
    • Export Citation
  • Donohue, K., and M. Wimbush, 1998: Model results of flow instabilities in the tropical Pacific Ocean. J. Geophys. Res., 103 , 2140121412.

    • Search Google Scholar
    • Export Citation
  • Enfield, D., 1987: The intraseasonal oscillation in eastern Pacific sea levels: How is it forced? J. Phys. Oceanogr., 17 , 18601876.

  • Eriksen, C., 1982: Equatorial wave vertical modes observed in a western Pacific island array. J. Phys. Oceanogr., 12 , 12061227.

  • Eriksen, C., and J. Richman, 1988: An estimate of equatorial wave energy flux at 9- to 90-day periods in the central Pacific. J. Geophys. Res., 93 , 1545515466.

    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., and R. A. Weller, 2006: Intraseasonal variability near 10°N in the eastern tropical Pacific Ocean. J. Geophys. Res., 111 .C05015, doi:10.1029/2005JC002989.

    • Search Google Scholar
    • Export Citation
  • Hendon, H., and M. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Hendon, H., B. Liebmann, and J. Glick, 1998: Oceanic Kelvin waves and the Madden–Julian oscillation. J. Atmos. Sci., 55 , 88101.

  • Johnson, E., 1993: Effects of a mean three-dimensional flow on intraseasonal Kelvin waves in the equatorial Pacific Ocean. J. Geophys. Res., 98 , 1018510194.

    • Search Google Scholar
    • Export Citation
  • Johnson, E., and M. McPhaden, 1993: Structure of intraseasonal Kelvin waves in the equatorial Pacific Ocean. J. Phys. Oceanogr., 23 , 608625.

    • Search Google Scholar
    • Export Citation
  • Kessler, W., and J. McCreary, 1993: The annual wind-driven Rossby wave in the subthermocline equatorial Pacific. J. Phys. Oceanogr., 23 , 11921207.

    • Search Google Scholar
    • Export Citation
  • Kessler, W., and M. McPhaden, 1995: Oceanic Kelvin waves and the 1991–93 El Niño. J. Climate, 8 , 17571774.

  • Kessler, W., M. McPhaden, and K. Weickmann, 1995: Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J. Geophys. Res., 100 , 1061310631.

    • Search Google Scholar
    • Export Citation
  • Kutsuwada, K., and M. McPhaden, 2002: Intraseasonal variations in the upper equatorial Pacific Ocean prior to and during the 1997–98 El Niño. J. Phys. Oceanogr., 32 , 11331149.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Firing, 1985: The annual Rossby wave in the central equatorial Pacific Ocean. J. Phys. Oceanogr., 15 , 5567.

  • Luther, D., and E. Johnson, 1990: Eddy energetics in the upper equatorial Pacific during the Hawaii-to-Tahiti Shuttle Experiment. J. Phys. Oceanogr., 20 , 913944.

    • Search Google Scholar
    • Export Citation
  • Lyman, J., D. Chelton, R. deSzoeke, and R. Samelson, 2005: Tropical instability waves as a resonance between equatorial Rossby waves. J. Phys. Oceanogr., 35 , 232254.

    • Search Google Scholar
    • Export Citation
  • Lyman, J., G. Johnson, and W. Kessler, 2007: Distinct 17-day and 33-day tropical instability waves in subsurface observations. J. Phys. Oceanogr., 37 , 855872.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • McPhaden, M., 1996: Monthly period oscillations in the Pacific North Equatorial Countercurrent. J. Geophys. Res., 101 , 63376359.

  • McPhaden, M., and R. Knox, 1979: Equatorial Kelvin and inertio-gravity waves in a zonal shear flow. J. Phys. Oceanogr., 9 , 263277.

  • McPhaden, M., and B. Taft, 1988: Dynamics of seasonal and intraseasonal variability in the eastern equatorial Pacific. J. Phys. Oceanogr., 18 , 17131732.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M., and P. Ripa, 1990: Wave-mean flow interactions in the equatorial ocean. Annu. Rev. Fluid Mech., 22 , 167205.

  • McPhaden, M., J. Proehl, and L. Rothstein, 1986: The interaction of equatorial Kelvin waves with realistically sheared zonal currents. J. Phys. Oceanogr., 16 , 14991515.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M., and Coauthors, 1998: Tropical Ocean Global Atmosphere (TOGA) observing system: A decade of progress. J. Geophys. Res., 103 , 1416914240.

    • Search Google Scholar
    • Export Citation
  • Meyers, S., and J. O’Brien, 1994: Spatial and temporal 26-day SST variations in the equatorial Indian Ocean using wavelet analysis. Geophys. Res. Lett., 21 , 777780.

    • Search Google Scholar
    • Export Citation
  • Meyers, S., B. Kelly, and J. O’Brien, 1993: An introduction to wavelet analysis in oceanography and meteorology: With application to the dispersion of Yanai waves. Mon. Wea. Rev., 121 , 28582866.

    • Search Google Scholar
    • Export Citation
  • Moore, D., and S. Philander, 1977: Modelling the tropical ocean circulation. The Sea—Ideas and Observations on Progress in the Study of the Seas, E. D. Goldberg, Ed., Marine Modeling, Vol. 6, John Wiley and Sons, 319–361.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and D. Moore, 1968: Is the Cromwell Current driven by equatorial Rossby waves? J. Fluid Mech., 33 , 241259.

  • Perez, R., D. Chelton, and R. Miller, 2005: The effects of wind forcing and background mean currents on the latitudinal structure of equatorial Rossby waves. J. Phys. Oceanogr., 35 , 666682.

    • Search Google Scholar
    • Export Citation
  • Périgaud, C., 1990: Sea level oscillations observed with Geosat along the two shear fronts of the Pacific north equatorial countercurrent. J. Geophys. Res., 95 , 72397248.

    • Search Google Scholar
    • Export Citation
  • Polito, P. S., and O. T. Sato, 2003: Patterns of sea surface height and heat storage associated to intraseasonal Rossby waves in the tropics. J. Geophys. Res., 108 .3373, doi:10.1029/2002JC001684.

    • Search Google Scholar
    • Export Citation
  • Qiao, L., and R. Weisberg, 1995: Tropical instability wave kinematics: Observations from the Tropical Instability Wave Experiment. J. Geophys. Res., 100 , 86778693.

    • Search Google Scholar
    • Export Citation
  • Ripa, P., and S. Hayes, 1981: Evidence for equatorial trapped waves at the Galápagos Islands. J. Geophys. Res., 86 , 65096516.

  • Roundy, P., and W. Frank, 2004a: A climatology of waves in the equatorial region. J. Atmos. Sci., 61 , 21052132.

  • Roundy, P., and W. Frank, 2004b: Effects of low-frequency wave interactions on intraseasonal oscillations. J. Atmos. Sci., 61 , 30253040.

    • Search Google Scholar
    • Export Citation
  • Roundy, P., and G. Kiladis, 2006: Observed relationships between oceanic Kelvin waves and atmospheric forcing. J. Climate, 19 , 52535272.

    • Search Google Scholar
    • Export Citation
  • Schlax, M., and D. Chelton, 1994: Aliased tidal errors in TOPEX/POSEIDON sea surface height data. J. Geophys. Res., 99 , 2476124775.

  • Takayabu, Y., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72 , 433448.

    • Search Google Scholar
    • Export Citation
  • Tsai, P., J. O’Brien, and M. Luther, 1992: The 26-day oscillation observed in the satellite sea surface temperature measurements in the equatorial western Indian Ocean. J. Geophys. Res., 97 , 96059618.

    • Search Google Scholar
    • Export Citation
  • Wakata, Y., 2007: Frequency-wavenumber spectra of equatorial waves detected from satellite altimeter data. J. Oceanogr., 63 , 483490.

  • Wallace, J., and V. Kousky, 1968: Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25 , 900907.

  • Wheeler, M., and G. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and A. Gill, 1976: Observations of equatorially trapped waves in Pacific sea level variations. Deep-Sea Res., 23 , 371390.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., and M. Murakami, 1970: Spectrum analysis of symmetric and antisymmetric equatorial waves. J. Meteor. Soc. Japan, 48 , 331346.

    • Search Google Scholar
    • Export Citation
  • Zang, X., L-L. Fu, and C. Wunsch, 2002: Observed reflectivity of the western boundary of the equatorial Pacific Ocean. J. Geophys. Res., 107 .3150, doi:10.1029/2000JC000719.

    • Search Google Scholar
    • Export Citation
  • Zangvil, A., and M. Yanai, 1980: Upper tropospheric waves in the tropics. Part I: Dynamical analysis in the wavenumber-frequency domain. J. Atmos. Sci., 37 , 283298.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 730 158 24
PDF Downloads 615 101 11