Permanent Meanders in the California Current System

L. R. Centurioni Scripps Institution of Oceanography, La Jolla, California

Search for other papers by L. R. Centurioni in
Current site
Google Scholar
PubMed
Close
,
J. C. Ohlmann Institute for Computational Earth Systems Science, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by J. C. Ohlmann in
Current site
Google Scholar
PubMed
Close
, and
P. P. Niiler Scripps Institution of Oceanography, La Jolla, California

Search for other papers by P. P. Niiler in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Surface Velocity Program (SVP) drifter data from 1987 through 2005; Archiving, Validation, and Interpretation of Satellite Oceanographic data (AVISO) sea level anomalies; and NCEP reanalysis winds are used to assemble a time-averaged map of the 15-m-deep geostrophic velocity field in the California Current System seaward of about 50 km from the coast. The wind data are used to compute the Ekman currents, which are then subtracted from the drifter velocity measurements. The resulting proxy for geostrophic velocity anomalies computed from drifters and from satellite sea level measurements are combined to form an unbiased mean geostrophic circulation map. The result shows a California Current System that flows southward with four permanent meanders that can extend seaward for more than 800 km. Bands of alternating eastward and westward zonal currents are connected to the meanders and extend several thousand kilometers into the Pacific Ocean. This observed time-mean circulation and its associated eddy energy are compared to those produced by various high-resolution OGCM solutions: Regional Ocean Modeling System (ROMS; 5 km), Parallel Ocean Program model (POP; 1/10°), Hybrid Coordinate Ocean Model (HYCOM; 1/12°), and Naval Research Laboratory (NRL) Layered Ocean Model (NLOM; 1/32°). Simulations in closest agreement with observations come from ROMS, which also produces four meanders, geostrophic time-mean currents, and geostrophic eddy energy consistent with the observed values. The time-mean ageostrophic velocity in ROMS is strongest within the cyclonic part of the meanders and is similar to the ageostrophic velocity produced by nonlinear interaction of Ekman currents with the near-surface vorticity field.

Corresponding author address: Dr. Luca R. Centurioni, 9500 Gilman Dr., MC 0213, La Jolla, CA 92093. Email: centurioni@ucsd.edu

Abstract

Surface Velocity Program (SVP) drifter data from 1987 through 2005; Archiving, Validation, and Interpretation of Satellite Oceanographic data (AVISO) sea level anomalies; and NCEP reanalysis winds are used to assemble a time-averaged map of the 15-m-deep geostrophic velocity field in the California Current System seaward of about 50 km from the coast. The wind data are used to compute the Ekman currents, which are then subtracted from the drifter velocity measurements. The resulting proxy for geostrophic velocity anomalies computed from drifters and from satellite sea level measurements are combined to form an unbiased mean geostrophic circulation map. The result shows a California Current System that flows southward with four permanent meanders that can extend seaward for more than 800 km. Bands of alternating eastward and westward zonal currents are connected to the meanders and extend several thousand kilometers into the Pacific Ocean. This observed time-mean circulation and its associated eddy energy are compared to those produced by various high-resolution OGCM solutions: Regional Ocean Modeling System (ROMS; 5 km), Parallel Ocean Program model (POP; 1/10°), Hybrid Coordinate Ocean Model (HYCOM; 1/12°), and Naval Research Laboratory (NRL) Layered Ocean Model (NLOM; 1/32°). Simulations in closest agreement with observations come from ROMS, which also produces four meanders, geostrophic time-mean currents, and geostrophic eddy energy consistent with the observed values. The time-mean ageostrophic velocity in ROMS is strongest within the cyclonic part of the meanders and is similar to the ageostrophic velocity produced by nonlinear interaction of Ekman currents with the near-surface vorticity field.

Corresponding author address: Dr. Luca R. Centurioni, 9500 Gilman Dr., MC 0213, La Jolla, CA 92093. Email: centurioni@ucsd.edu

Save
  • Auad, G., A. Pares-Sierra, and G. Vallis, 1991: Circulation and energetics of a model of the California Current System. J. Phys. Oceanogr., 21 , 15341552.

    • Search Google Scholar
    • Export Citation
  • Austin, J. A., and J. Barth, 2002: Drifter behavior on the Oregon–Washington Shelf during downwelling—Favorable winds. J. Phys. Oceanogr., 32 , 31323144.

    • Search Google Scholar
    • Export Citation
  • Batteen, M. L., 1997: Wind-forced modeling studies of currents, meanders, and eddies in the California Current system. J. Geophys. Res., 102 , 9851010.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4 , 5588.

  • Bryan, K., 1969: A numerical method for the study of the circulation of the World Ocean. J. Comput. Phys., 4 , 347376.

  • Chereskin, T. K., 1995: Direct evidence for an Ekman balance in the California Current. J. Geophys. Res., 100 , 1826118269.

  • Chereskin, T. K., M. Y. Morris, P. P. Niiler, P. M. Kosro, R. L. Smith, S. R. Ramp, C. A. Collins, and D. L. Musgrave, 2000: Spatial and temporal characteristics of the mesoscale circulation of the California Current from eddy-resolving moored and shipboard measurements. J. Geophys. Res., 105 , 12451270.

    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1970: A mathematical model of the Indian Ocean. Deep-Sea Res., 17 , 4575.

  • DaSilva, A., C. Young, and S. Levitus, 1994: Atlas of Surface Marine Data 1994. Vols. 1–5, NOAA Atlas NESDIS 6–10, 1636 pp.

  • Davis, R. E., 1985: Drifter observations of coastal surface currents during CODE: The method and descriptive view. J. Geophys. Res., 90 , 47414755.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1991: Observing the general circulation with floats. Deep–Sea Res., 38A , (Suppl.). S531S571.

  • Edwards, C. A., and J. Pedlosky, 1995: The influence of distributed sources and upwelling on the baroclinic structure of abyssal circulation. J. Phys. Oceanogr., 25 , 22592284.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmospheric–Ocean Dynamics. Academic Press, 662 pp.

  • Haidvogel, D. B., J. L. Wilkin, and R. E. Young, 1991: A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates. J. Comput. Phys., 94 , 151185.

    • Search Google Scholar
    • Export Citation
  • Hansen, D. V., and P. M. Poulain, 1996: Quality control and interpolations of WOCE-TOGA drifter data. J. Atmos. Oceanic Technol., 13 , 900909.

    • Search Google Scholar
    • Export Citation
  • Hellerman, S., and M. Rosenstein, 1983: Normal monthly stress over the World Ocean with error estimates. J. Phys. Oceanogr., 13 , 10931104.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., 1979: The California Current system—Hypotheses and facts. Prog. Oceanogr., 8 , 191279.

  • Hickey, B. M., 1998: Coastal oceanography of western North America from the tip of Baja to Vancouver Island. The Sea: The Global Coastal Ocean, A. R. Robinson and K. H. Brink, Eds., Regional Studies and Syntheses, Vol. 11, Wiley & Sons, 345–393.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., and J. D. Thompson, 1980: A numerical study of Loop Current intrusions and eddy shedding. J. Phys. Oceanogr., 10 , 16111651.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., A. J. Wallcraft, W. J. Schmitz Jr., P. J. Hogan, and E. J. Metzger, 1996: Dynamics of the Kuroshio/Oyashio current system using eddy-resolving models of the North Pacific Ocean. J. Geophys. Res., 101 , 941976.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2002: Air–sea flux estimates and the 1997–1998 ENSO event. Bound.-Layer Meteor., 103 , 439458.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., H. E. Hurlburt, and A. J. Wallcraft, 2005: Stability-dependent exchange coefficients for air–sea fluxes. J. Atmos. Oceanic Technol., 22 , 10801094.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., R. C. Beardsley, R. Limeburner, K. H. Brink, J. D. Paduan, and T. K. Chereskin, 1998: Variability of the near-surface eddy kinetic energy in the California Current based on altimeter, drifter, and moored current data. J. Geophys. Res., 103 , 1306713083.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G. S. E., 1992: The Point Arena eddy—A recurring summer anticyclone in the California Current. J. Geophys. Res., 97 , 1255712568.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Lee, D-K., and P. P. Niiler, 1998: The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res., 103 , 75797591.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Maltrud, M. E., and J. L. McClean, 2005: An eddy resolving global 1/10° ocean simulation. Ocean Modell., 8 , 3154.

  • Maltrud, M. E., R. D. Smith, A. J. Semtner, and R. C. Malone, 1998: Global eddy-resolving ocean simulations driven by 1985–1995 atmospheric fields. J. Geophys. Res., 103 , 3082530853.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional ocean models. Ocean Modell., 3 , 120.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2003: Equilibrium structure and dynamics of the California Current system. J. Phys. Oceanogr., 33 , 753783.

    • Search Google Scholar
    • Export Citation
  • McClean, J. L., P. M. Poulain, J. W. Pelton, and M. E. Maltrud, 2002: Eulerian and Lagrangian statistics from surface drifters and a high-resolution POP simulation in the North Atlantic. J. Phys. Oceanogr., 32 , 24722491.

    • Search Google Scholar
    • Export Citation
  • McClean, J. L., M. E. Maltrud, and F. O. Bryan, 2006: Measures of the fidelity of eddying ocean models. Oceanography, 1 , 104117.

  • McNally, G. J., W. C. Patzert, A. D. Kirwan, and A. C. Vastano, 1983: The near-surface circulation of the North Pacific using satellite tracked drifting buoys. J. Geophys. Res., 88 , 75077518.

    • Search Google Scholar
    • Export Citation
  • Metzger, E. J., and H. E. Hurlburt, 1996: Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J. Geophys. Res., 101 , 1233112352.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., 2001: The World Ocean surface circulation. Ocean Circulation and Climate: Observing and Modeling the Global Ocean, J. Church, G. Siedler, and J. Gould, Eds., Academic Press, 193–204.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., A. S. Sybrandy, K. Bi, P. M. Poulain, and D. Bitterman, 1995: Measurements of the water-following capability of holey–sock and TRISTAR drifters. Deep-Sea Res., 1 , 19511964.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., N. A. Maximenko, G. G. Panteleev, T. Yamagata, and D. B. Olson, 2003: Near-surface dynamical structure of the Kuroshio Extension. J. Geophys. Res., 108 .3193, doi:10.1029/2002JC001461.

    • Search Google Scholar
    • Export Citation
  • Pares-Sierra, A., W. B. White, and C-K. Tai, 1993: Wind-driven coastal generation of annual mesoscale eddy activity in the California Current system: A numerical model. J. Phys. Oceanogr., 23 , 11101123.

    • Search Google Scholar
    • Export Citation
  • Pazan, S. E., and P. P. Niiler, 2001: Recovery of near-surface velocity from undrogued drifters. J. Atmos. Oceanic Technol., 18 , 476489.

    • Search Google Scholar
    • Export Citation
  • Poulain, P-M., and P. P. Niiler, 1989: Statistical analysis of the surface circulation in the California Current system using satellite-tracked drifters. J. Phys. Oceanogr., 19 , 15881603.

    • Search Google Scholar
    • Export Citation
  • Ralph, E. A., and P. P. Niiler, 1999: Wind-driven currents in the tropical Pacific. J. Phys. Oceanogr., 29 , 21212129.

  • Rosmond, T. E., J. Teixeira, M. Peng, T. F. Hogan, and R. Pauley, 2002: Navy operational global atmospheric prediction system (NOGAPS): Forcing for ocean models. Oceanography, 15 , 99108.

    • Search Google Scholar
    • Export Citation
  • Send, U., 1989: Vorticity and instability during flow reversals on the continental shelf. J. Phys. Oceanogr., 19 , 16201633.

  • Shriver, J. F., and H. E. Hurlburt, 1997: The contribution of the global thermohaline circulation to the Pacific to Indian Ocean throughflow via Indonesia. J. Geophys. Res., 102 , 54915511.

    • Search Google Scholar
    • Export Citation
  • Shriver, J. F., H. E. Hurlburt, O. M. Smedstad, A. J. Wallcraft, and R. C. Rhodes, 2007: 1/32° real-time global ocean prediction and value added over 1/16° resolution. J. Mar. Syst., 65 , 326.

    • Search Google Scholar
    • Export Citation
  • Smedstad, O. M., H. E. Hurlburt, E. J. Metzger, R. C. Rhodes, J. F. Shriver, A. J. Wallcraft, and A. B. Kara, 2003: An operational eddy-resolving 1/16° global ocean nowcast forecast system. J. Mar. Syst., 40–41 , 341361.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., J. K. Dukowicz, and R. C. Malone, 1992: Parallel ocean circulation modeling. Physica D, 60 , 3861.

  • Smith, R. D., M. E. Maltrud, F. O. Bryan, and M. W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr., 30 , 15321561.

    • Search Google Scholar
    • Export Citation
  • Song, Y., and D. B. Haidvogel, 1994: A semi-implicit ocean circulation model using a generalized topography-following coordinate. J. Comput. Phys., 115 , 228244.

    • Search Google Scholar
    • Export Citation
  • Strub, P. T., and C. James, 2000: Altimeter-derived variability of surface velocities in the California Current system: 2. Seasonal circulation and eddy statistics. Deep-Sea Res., 47B , 318326.

    • Search Google Scholar
    • Export Citation
  • Strub, P. T., P. M. Kosro, and A. Huyer, 1991: The nature of the cold filaments in the California Current System. J. Geophys. Res., 96 , 1474314768.

    • Search Google Scholar
    • Export Citation
  • Swenson, M. S., and P. P. Niiler, 1996: Statistical analysis of the surface circulation of the California Current. J. Geophys. Res., 101 , 2263122645.

    • Search Google Scholar
    • Export Citation
  • Swenson, M. S., P. P. Niiler, K. H. Brink, and M. R. Abbott, 1992: Drifter observations of a cold filament off Point Arena, California, in July 1988. J. Geophys. Res., 97 , 35933610.

    • Search Google Scholar
    • Export Citation
  • Tokmakian, R., and J. L. McClean, 2003: How realistic is the high-frequency signal of a 0.1° resolution ocean model? J. Geophys. Res., 108 .3115, doi:10.1029/2002JC001446.

    • Search Google Scholar
    • Export Citation
  • Wallcraft, A. J., A. B. Kara, H. E. Hurlburt, and P. A. Rochford, 2003: The NRL Layered Ocean Model (NLOM) with an embedded mixed layer submodel: Formulation and tuning. J. Atmos. Oceanic Technol., 20 , 16011615.

    • Search Google Scholar
    • Export Citation
  • Winant, C. D., D. J. Alden, E. P. Dever, K. A. Edwards, and M. C. Hendershott, 1999: Near-surface trajectories off central and southern California. J. Geophys. Res., 104 , 1571315726.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 811 333 12
PDF Downloads 314 110 6