• Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423 , 159162.

    • Search Google Scholar
    • Export Citation
  • Anderson, W. G., A. Gnanadesikan, R. Hallberg, J. Dunne, and B. L. Samuels, 2007: Impact of ocean color on the maintenance of the Pacific cold tongue. Geophys. Res. Lett., 34 .L11609, doi:10.1029/2007GL030100.

    • Search Google Scholar
    • Export Citation
  • Bingham, F. M., 1992: Formation and spreading of subtropical mode water in the North Pacific. J. Geophys. Res., 97 , 1117711189.

  • Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17 , 970985.

  • Bryan, K., and L. J. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84 , 25032517.

  • Canuto, V. M., A. Howard, Y. Cheng, and R. L. Miller, 2004: Latitude-dependent vertical mixing and the tropical thermocline in a global OGCM. Geophys. Res. Lett., 31 .L16305, doi:10.1029/2004GL019891.

    • Search Google Scholar
    • Export Citation
  • Conkright, M. E., and Coauthors, 2002: Introduction. Vol. 1, World Ocean Atlas 2001, NOAA Atlas NESDIS 42, 160 pp.

  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19 , 46054630.

  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Endoh, T., and T. Hibiya, 2006: Numerical study of the meridional overturning circulation with mixing hotspots in the Pacific Ocean. J. Oceanogr., 62 , 259266.

    • Search Google Scholar
    • Export Citation
  • Fine, R. A., R. Lukas, F. M. Bingham, M. J. Warner, and R. H. Gammon, 1994: The western equatorial Pacific: A water mass crossroads. J. Geophys. Res., 99 , 2506325080.

    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., and W. H. Munk, 1991: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80 , 291297.

  • Gent, P., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • GFDL Atmospheric Model Development Team, 2004: The new GFDL global atmosphere and land model AM2–LM2: Evaluation with prescribed SST simulations. J. Climate, 17 , 46414673.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., R. D. Slater, and B. L. Samuels, 2003: Sensitivity of water mass transformation and heat transport to subgridscale mixing in coarse-resolution ocean models. Geophys. Res. Lett., 30 .1967, doi:10.1029/2003GL018036.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422 , 477478.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., R. C. Pacanowski, and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128 , 538564.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1 , 4579.

  • Hallberg, R., 2000: Time integration of diapycnal diffusion and Richardson number–dependent mixing in isopycnal coordinate ocean models. Mon. Wea. Rev., 128 , 14021419.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2003: The suitability of large-scale ocean models for adapting parameterizations of boundary mixing and a description of a refined bulk mixed layer model. Near-Boundary Processes and Their Parameterization: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 187–203.

  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36 , 22322252.

    • Search Google Scholar
    • Export Citation
  • Hayes, S., L. Magnum, J. Picaut, A. Sumi, and K. Takeuchi, 1991: A moored array for real-time measurements in the tropical Pacific Ocean. Bull. Amer. Meteor. Soc., 72 , 339347.

    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91 , 84878496.

    • Search Google Scholar
    • Export Citation
  • Jackson, L., R. Hallberg, and S. Legg, 2008: A parameterization of shear-driven turbulence for ocean climate models. J. Phys. Oceanogr., 38 , 10331053.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and D. W. Moore, 1997: The Pacific subsurface countercurrents and an inertial model. J. Phys. Oceanogr., 27 , 24482459.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and M. J. McPhaden, 1999: Interior pycnocline flow from the subtropical to the equatorial Pacific Ocean. J. Phys. Oceanogr., 29 , 30733089.

    • Search Google Scholar
    • Export Citation
  • Jones, J., 1973: Vertical mixing in the equatorial undercurrent. J. Phys. Oceanogr., 3 , 286296.

  • Kessler, W. S., 2002: Mean three-dimensional circulation in the northeast tropical Pacific. J. Phys. Oceanogr., 32 , 24572471.

  • Large, W., and S. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp.

  • Legg, S., and K. M. Huijts, 2006: Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep-Sea Res., 53 , 140156.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single column model tests. Mon. Wea. Rev., 128 , 31873199.

    • Search Google Scholar
    • Export Citation
  • Lu, P., and J. P. McCreary, 1995: Influence of the ITCZ on the flow of thermocline water from the subtropical to the equatorial pacific ocean. J. Phys. Oceanogr., 25 , 30763088.

    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13 , 292309.

  • McCreary, J. P., and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24 , 466497.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., P. Lu, and Z. Yu, 2002: Dynamics of the Pacific subsurface countercurrents. J. Phys. Oceanogr., 32 , 23792404.

  • Meehl, G. A., P. R. Gent, J. M. Arblaster, B. L. Otto-Bliesner, E. C. Brady, and A. Craig, 2001: Factors that affect the amplitude of El Niño in global coupled climate models. Climate Dyn., 17 , 515526.

    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., J. Morzel, D. B. Chelton, and M. H. Freilich, 2004: Wind stress curl and wind stress divergence biases from rain effects on QSCAT surface wind retrievals. J. Atmos. Oceanic Technol., 21 , 12161231.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Shubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120 , 9781002.

    • Search Google Scholar
    • Export Citation
  • Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126 , 251273.

  • Pedlosky, J., 1983: Eastern boundary ventilation and the structure of the thermocline. J. Phys. Oceanogr., 13 , 20382044.

  • Peters, H., M. C. Gregg, and T. B. Sanford, 1995: Detail and scaling of turbulent overturns in the Pacific equatorial undercurrent. J. Geophys. Res., 100 , 1834918368.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and B. Cornuelle, 1992: The subtropical mode waters of the South Pacific Ocean. J. Phys. Oceanogr., 22 , 11781187.

  • Rowe, G., E. Firing, and G. Johnson, 2000: Pacific equatorial subsurface countercurrent velocity, transport, and potential vorticity. J. Phys. Oceanogr., 30 , 11721187.

    • Search Google Scholar
    • Export Citation
  • Samelson, R., and G. K. Vallis, 1997: Large-scale circulation with small diapycnal diffusion: The two-thermocline limit. J. Mar. Res., 2 , 223275.

    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., N. Gruber, M. A. Brzezinski, and J. P. Dunne, 2003: High latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 427 , 5660.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the general circulation. Ocean Modell., 6 , 245263.

    • Search Google Scholar
    • Export Citation
  • Suga, T., Y. Takei, and K. Hanawa, 1997: Thermostad distribution in the North Pacific subtropical gyre: The central mode water and the subtropical mode water. J. Phys. Oceanogr., 27 , 140152.

    • Search Google Scholar
    • Export Citation
  • Talley, L., Y. Nagata, M. Fujimura, T. Iwao, T. Kono, D. Inagake, M. Hirai, and K. Okuda, 1995: North Pacific intermediate water in the Kuroshio/Oyashio mixed water region. J. Phys. Oceanogr., 25 , 475501.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., K. Dixon, and W. S. Broecker, 1991: The Peru upwelling and the ventilation of the South Pacific thermocline. J. Geophys. Res., 96 , 2046720497.

    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., 1981: The origin of the Pacific equatorial 13°C water. J. Phys. Oceanogr., 11 , 794812.

  • Vallis, G. K., 2000: Large-scale circulation and production of stratification: Effects of wind, geometry, and diffusion. J. Phys. Oceanogr., 30 , 933954.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17 , 525531.

  • Wittenberg, A. T., A. Rosati, N. C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • Wong, A. P., and G. C. Johnson, 2003: South Pacific eastern subtropical mode water. J. Phys. Oceanogr., 33 , 14931509.

  • Wright, D. G., 1997: An equation of state for use in ocean models: Eckart’s formula revisited. J. Atmos. Oceanic Technol., 14 , 735740.

    • Search Google Scholar
    • Export Citation
  • Xie, S. P., H. Xu, W. S. Kessler, and M. Nonaka, 2005: Air–sea interaction over the eastern Pacific warm pool: Gap winds, thermocline dome, and atmospheric convection. J. Climate, 18 , 520.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., and P. S. Schopf, 1997: Vertical eddy mixing in the tropical upper ocean: Its influence on zonal currents. J. Phys. Oceanogr., 27 , 14471458.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 112 38 1
PDF Downloads 67 23 0

Pacific Subtropical Cell Response to Reduced Equatorial Dissipation

M. J. HarrisonNOAA/GFDL, Princeton, New Jersey

Search for other papers by M. J. Harrison in
Current site
Google Scholar
PubMed
Close
and
R. W. HallbergNOAA/GFDL, Princeton, New Jersey

Search for other papers by R. W. Hallberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Equatorial turbulent diffusivities resulting from breaking gravity waves may be more than a factor of 10 less than those in the midlatitudes. A coupled general circulation model with a layered isopycnal coordinate ocean is used to assess Pacific climate sensitivity to a latitudinally varying background diapycnal diffusivity with extremely low values near the equator.

The control experiments have a minimum upper-ocean diffusivity of 10−5 m2 s−1 and are initialized from present-day conditions. The average depth of the σθ = 26.4 interface (z26.4) in the Pacific increases by ∼140 m after 500 yr of coupled model integration. This corresponds to a warming trend in the upper ocean. Low equatorial diffusivities reduce the z26.4 bias by ∼30%. Isopycnal surfaces are elevated from the eastern boundary up to midlatitudes by cooling in the upper several hundred meters, partially compensated by freshening. Entrainment of intermediate water masses from below σθ = 26.4 decreases by ∼1.5 Sv (1 Sv ≡ 106 m3 s−1), mainly in the western tropical Pacific. The Pacific heat uptake (30°S–30°N) from the atmosphere reduces by ∼0.1 PW. This is associated with warmer entrainment temperatures in the eastern equatorial Pacific upwelling region. Equatorward heat transport from the Southern Ocean increases by ∼0.07 PW.

Reducing the upper-ocean background diffusivity uniformly to 10−6 m2 s−1 cools the upper ocean from the tropics, but warms and freshens from the midlatitudes. Enhanced convergence into the Pacific of water lighter than σθ = 26.4 compensates the reduction in upwelling of intermediate waters in the tropics. Basin-averaged z26.4 bias increases in the low background case.

These results demonstrate basin-scale sensitivity to the observed suppression of equatorial background dissipation. This has clear implications for understanding oceanic heat uptake in the Pacific as well as other important aspects of the climate system. Diapycnal diffusivities due to truncation errors and other numerical artifacts in ocean models may need to be less than 10−6 m2 s−1 in order to accurately represent this effect in climate models.

Corresponding author address: M. J. Harrison, NOAA/GFDL, P.O. Box 308, Princeton, NJ 08542-0308. Email: matthew.harrison@noaa.gov

Abstract

Equatorial turbulent diffusivities resulting from breaking gravity waves may be more than a factor of 10 less than those in the midlatitudes. A coupled general circulation model with a layered isopycnal coordinate ocean is used to assess Pacific climate sensitivity to a latitudinally varying background diapycnal diffusivity with extremely low values near the equator.

The control experiments have a minimum upper-ocean diffusivity of 10−5 m2 s−1 and are initialized from present-day conditions. The average depth of the σθ = 26.4 interface (z26.4) in the Pacific increases by ∼140 m after 500 yr of coupled model integration. This corresponds to a warming trend in the upper ocean. Low equatorial diffusivities reduce the z26.4 bias by ∼30%. Isopycnal surfaces are elevated from the eastern boundary up to midlatitudes by cooling in the upper several hundred meters, partially compensated by freshening. Entrainment of intermediate water masses from below σθ = 26.4 decreases by ∼1.5 Sv (1 Sv ≡ 106 m3 s−1), mainly in the western tropical Pacific. The Pacific heat uptake (30°S–30°N) from the atmosphere reduces by ∼0.1 PW. This is associated with warmer entrainment temperatures in the eastern equatorial Pacific upwelling region. Equatorward heat transport from the Southern Ocean increases by ∼0.07 PW.

Reducing the upper-ocean background diffusivity uniformly to 10−6 m2 s−1 cools the upper ocean from the tropics, but warms and freshens from the midlatitudes. Enhanced convergence into the Pacific of water lighter than σθ = 26.4 compensates the reduction in upwelling of intermediate waters in the tropics. Basin-averaged z26.4 bias increases in the low background case.

These results demonstrate basin-scale sensitivity to the observed suppression of equatorial background dissipation. This has clear implications for understanding oceanic heat uptake in the Pacific as well as other important aspects of the climate system. Diapycnal diffusivities due to truncation errors and other numerical artifacts in ocean models may need to be less than 10−6 m2 s−1 in order to accurately represent this effect in climate models.

Corresponding author address: M. J. Harrison, NOAA/GFDL, P.O. Box 308, Princeton, NJ 08542-0308. Email: matthew.harrison@noaa.gov

Save