• Adcroft, A., J-M. Campin, P. Heimbach, C. Hill, and J. Marshall, 2002: MITgcm release 1. 445 pp. [Available online at http://mitgcm.org/sealion/.].

  • Barnier, B., 1988: A numerical study on the influence of the mid-Atlantic ridge on nonlinear first-mode baroclinic Rossby waves generated by seasonal winds. J. Phys. Oceanogr., 18 , 417433.

    • Search Google Scholar
    • Export Citation
  • Bingham, F. M., and R. Lukas, 1996: Seasonal cycles of temperature, salinity and dissolved oxygen observed in the Hawaii Ocean time-series. Deep-Sea Res. II, 43 , 199213.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and M. G. Schlax, 1996: Global observations of oceanic Rossby waves. Science, 272 , 234238.

  • Deser, C., M. A. Alexander, and M. S. Timlin, 1996: Upper-ocean thermal variations in the North Pacific during 1970–1991. J. Climate, 9 , 18401855.

    • Search Google Scholar
    • Export Citation
  • Dore, J. E., R. Lukas, D. W. Sadler, and D. M. Karl, 2003: Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean. Nature, 424 , 754757.

    • Search Google Scholar
    • Export Citation
  • Douglass, E., D. Roemmich, and D. Stammer, 2006: Interannual variability in north–east Pacific circulation. J. Geophys. Res., 111 .C04001, doi:10.1029/2005JC003015.

    • Search Google Scholar
    • Export Citation
  • Finnigan, T. D., D. S. Luther, and R. Lukas, 2002: Observations of enhanced diapycnal mixing near the Hawaiian Ridge. J. Phys. Oceanogr., 32 , 29883002.

    • Search Google Scholar
    • Export Citation
  • Firing, Y. L., M. A. Merrifield, T. A. Schroeder, and B. Qiu, 2004: Interdecadal sea level fluctuations at Hawaii. J. Phys. Oceanogr., 34 , 25142524.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean models. J. Phys. Oceanogr., 20 , 150155.

  • Gu, D-F., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropical and extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., B. Cornuelle, A. Köhl, and D. Stammer, 2005: An eddy-permitting variational data assimilation system for the tropical Pacific Ocean. Quart. J. Roy. Meteor. Soc., 131 , 36593682.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., B. Cornuelle, V. Thierry, and D. Stammer, 2008: Impact of resolution and ECCO optimized forcing on simulations of the tropical Pacific. J. Atmos. Oceanic Technol., 25 , 131147.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2000: Climate variability inferred from a continuously stratified model of the ideal-fluid thermocline. J. Phys. Oceanogr., 30 , 13891406.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and B. Qiu, 1994: Three-dimensional structure of the wind-driven circulation in the subtropical North Pacific. J. Phys. Oceanogr., 24 , 16081622.

    • Search Google Scholar
    • Export Citation
  • Karl, D. M., and R. Lukas, 1996: The Hawaii Ocean time-series (HOT) program: Background, rationale and field implementation. Deep-Sea Res. II, 43 , 129156.

    • Search Google Scholar
    • Export Citation
  • Karl, D. M., J. E. Dore, R. Lukas, A. F. Michaels, N. R. Bates, and A. Knap, 2001: Building the long-term picture: The U.S. JGOFS time-series programs. Oceanography, 14 , 617.

    • Search Google Scholar
    • Export Citation
  • Kennan, S., 1993: Variability of the intermediate waters north of Oahu. M.S. thesis, Department of Oceanography, University of Hawaii, 135 pp.

  • Köhl, A., 2005: Anomalies of meridional overturning: Mechanisms in the North Atlantic. J. Phys. Oceanogr., 35 , 14551472.

  • Köhl, A., and D. Stammer, 2008a: Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J. Phys. Oceanogr, 38 , 19131930.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., and D. Stammer, 2008b: Decadal sea level changes in the 50-year GECCO ocean synthesis. J. Climate, 21 , 18761890.

  • Köhl, A., D. Stammer, and B. Cornuelle, 2007: Interannual to decadal changes in the ECCO global synthesis. J. Phys. Oceanogr., 37 , 313337.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266 , 634637.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9 , 24072423.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Liu, Z., and J. Pedlosky, 1994: Thermocline forced by annual and decadal surface temperature variation. J. Phys. Oceanogr., 24 , 587608.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., K. Ueyoshi, A. Köhl, E. Remy, K. Lorbacher, and D. Stammer, 2002: Input data sets for the ECCO global 1 degree WOCE synthesis. ECCO Report Series Rep. 18. [Available online at http://www.ecco-group.org.].

  • Lukas, R., 2001: Freshening of the upper thermocline in the North Pacific subtropical gyre associated with decadal changes of rainfall. Geophys. Res. Lett., 28 , 34853488.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., and F. Santiago-Mandujano, 1996: Interannual variability of Pacific deep and bottom waters observed in the Hawaii ocean time series. Deep-Sea Res. II, 43 , 243255.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., F. Santiago-Mandujano, F. Bingham, and A. Mantyla, 2001: Cold bottom water events observed in the Hawaii Ocean time series: Implications for vertical mixing. Deep-Sea Res. I, 48 , 9951021.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., R. Giering, Q. K. Zhang, D. Stammer, C. Hill, and T. Lee, 1999: Construction of the adjoint MIT ocean circulation model and application to Atlantic heat transport sensitivity. J. Geophys. Res., 104 , 2952929548.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and A. S. Kazmin, 2003: Decadal changes in the North Pacific oceanic frontal zones as revealed in ship and satellite observations. J. Geophys. Res., 108 .3078, doi:10.1029/1999JC000085.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2002: Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 32 , 353375.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and T. S. Durland, 2002: Interaction between an island and the ventilated thermocline: Implications for the Hawaiian Lee Countercurrent. J. Phys. Oceanogr., 32 , 34083426.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., 1965: Intermediate Waters of the Pacific Ocean. Johns Hopkins Press, 85 pp.

  • Roemmich, D., J. Gilson, B. Cornuelle, and R. Weller, 2001: Mean and time-varying meridional transport of heat at the tropical/subtropical boundary of the North Pacific Ocean. J. Geophys. Res., 106 , 89578970.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, C. M., and Coauthors, 2004: Influence of Rossby waves on nutrient dynamics and the plankton community structure in the North Pacific subtropical gyre. J. Geophys. Res., 109 .C05032, doi:10.1029/2003JC001976.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., A. J. Miller, M. A. Alexander, and C. Deser, 1999: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29 , 10561070.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., C. Wunsch, I. Fukumori, and J. Marshall, 2002a: State estimation improves prospects for ocean researcher. Eos, Trans. Amer. Geophys. Union, 83 , 289, 294–295.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2002b: Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107 .3118, doi:10.1029/2001JC000888.

    • Search Google Scholar
    • Export Citation
  • Sturges, W., and B. C. Hong, 2000: Decadal variability of sea level. Sea Level Rise: History and Consequences, B. C. Douglas, M. S. Kearney, and S. P. Leatherman, Eds., Academic Press, 165–176.

    • Search Google Scholar
    • Export Citation
  • Suga, T., A. Kato, and K. Hanawa, 2000: North Pacific tropical water: Its climatology and temporal changes associated with the climate regime shift in the 1970s. Prog. Oceanogr., 47 , 223256.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2006: Discrete Inverse and State Estimation Problems. Cambridge University Press, 384 pp.

  • Zhang, R-H., and Z. Liu, 1999: Decadal thermocline variability in the North Pacific Ocean: Two pathways around the subtropical gyre. J. Climate, 12 , 32733296.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 140 38 2
PDF Downloads 96 46 2

Causes for Large-Scale Hydrographic Changes at the Hawaii Ocean Time Series Station

D. StammerInstitut für Meereskunde, Universität Hamburg, Hamburg, Germany

Search for other papers by D. Stammer in
Current site
Google Scholar
PubMed
Close
,
S. ParkKorean Meteorological Administration, Seoul, Korea

Search for other papers by S. Park in
Current site
Google Scholar
PubMed
Close
,
A. KöhlInstitut für Meereskunde, Universität Hamburg, Hamburg, Germany

Search for other papers by A. Köhl in
Current site
Google Scholar
PubMed
Close
,
R. LukasDepartment of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by R. Lukas in
Current site
Google Scholar
PubMed
Close
, and
F. Santiago-MandujanoDepartment of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by F. Santiago-Mandujano in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Results from Estimating the Circulation and Climate of the Ocean (ECCO)–Scripps Institution of Oceanography (SIO) global ocean state estimate, available over the 11-yr period 1992 through 2002, are compared with independent observations available at the Hawaii Ocean time series station ALOHA. The comparison shows that at this position, the estimated temporal variability has some skill in simulating observed ocean variability and that the quality of future syntheses could benefit from additional information available from the Argo network and from the time series observations themselves. On a decadal time scale, the influence radius of the station ALOHA TS time series covers large parts of the tropical and subtropical Pacific Ocean and reaches even into the Indian Ocean through the Indonesian Throughflow.

Estimated changes in sea surface height (SSH) result largely from thermosteric changes; however, nonsteric (barotropic) variations on the order of 1–2 cm also contribute to SSH changes at station ALOHA. Moreover, changes of similar magnitude can be caused by changes in the salinity field because of a quasi-biennial oscillation in the horizontal flow structure and heaving of the mean salinity structure on seasonal and interannual time scales.

The adjoint modeling framework confirms westward-propagating Rossby waves (due to wind forcing) and subduction of water-mass anomalies (due to surface buoyancy forcing) as the primary mechanisms leading to observed changes of TS structures at station ALOHA. Specifically, the analysis identifies surface freshwater fluxes along the wintertime outcrop of intermediate waters as a primary cause for salinity changes at station ALOHA and wind stress forcing east of the station position as another forcing mechanism of salinity variations around the Hawaiian Archipelago.

Corresponding author address: Detlef Stammer, Institute für Meereskunde, Universität Hamburg, Bundestrasse 53, 20146 Hamburg, Germany. Email: detlef.stammer@zmaw.de

Abstract

Results from Estimating the Circulation and Climate of the Ocean (ECCO)–Scripps Institution of Oceanography (SIO) global ocean state estimate, available over the 11-yr period 1992 through 2002, are compared with independent observations available at the Hawaii Ocean time series station ALOHA. The comparison shows that at this position, the estimated temporal variability has some skill in simulating observed ocean variability and that the quality of future syntheses could benefit from additional information available from the Argo network and from the time series observations themselves. On a decadal time scale, the influence radius of the station ALOHA TS time series covers large parts of the tropical and subtropical Pacific Ocean and reaches even into the Indian Ocean through the Indonesian Throughflow.

Estimated changes in sea surface height (SSH) result largely from thermosteric changes; however, nonsteric (barotropic) variations on the order of 1–2 cm also contribute to SSH changes at station ALOHA. Moreover, changes of similar magnitude can be caused by changes in the salinity field because of a quasi-biennial oscillation in the horizontal flow structure and heaving of the mean salinity structure on seasonal and interannual time scales.

The adjoint modeling framework confirms westward-propagating Rossby waves (due to wind forcing) and subduction of water-mass anomalies (due to surface buoyancy forcing) as the primary mechanisms leading to observed changes of TS structures at station ALOHA. Specifically, the analysis identifies surface freshwater fluxes along the wintertime outcrop of intermediate waters as a primary cause for salinity changes at station ALOHA and wind stress forcing east of the station position as another forcing mechanism of salinity variations around the Hawaiian Archipelago.

Corresponding author address: Detlef Stammer, Institute für Meereskunde, Universität Hamburg, Bundestrasse 53, 20146 Hamburg, Germany. Email: detlef.stammer@zmaw.de

Save