• Baehr, J., K. Keller, and J. Marotzke, 2007: Detecting potential changes in the meridional overturning circulation at 26°N in the Atlantic. Climatic Change, in press, 10.1007/s10584-006-9153-z.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., R. Käse, and D. Stammer, 2003: The sensitivity of the Greenland–Scotland Ridge overflow to forcing changes. J. Phys. Oceanogr., 33 , 23072319.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., and P. Herrmann, 1994: Annual cycle of poleward heat transport in the ocean: Results from high-resolution modeling of the North and equatorial Atlantic. J. Phys. Oceanogr., 24 , 91107.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., M. Scheinert, J. Dengg, A. Biastoch, and A. Funk, 2006: Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys. Res. Lett., 33 .L21S01, doi:10.1029/2006GL026906.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., H. R. Longworth, and S. A. Cunningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 436 , 655657.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317 , 935938.

    • Search Google Scholar
    • Export Citation
  • Dengler, M., J. Fischer, F. A. Schott, and R. Zantopp, 2006: Deep Labrador Current and its variability in 1996–2005. Geophys. Res. Lett., 33 .L21S06, doi:10.1029/2006GL026702.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, rates, and pathways. J. Geophys. Res., 99 , 1231912341.

    • Search Google Scholar
    • Export Citation
  • Döscher, R. C., and A. Beckmann, 2000: Effects of a bottom boundary layer parameterization in a coarse-resolution ocean model of the North Atlantic. J. Atmos. Oceanic Technol., 17 , 698707.

    • Search Google Scholar
    • Export Citation
  • Döscher, R. C., C. W. Böning, and P. Herrman, 1994: Response of circulation and heat transport in the North Atlantic to changes in forcing in northern latitudes: A model study. J. Phys. Oceanogr., 24 , 23062320.

    • Search Google Scholar
    • Export Citation
  • Eden, C., 1999: Interannual to interdecadal variability in the North Atlantic Ocean. Ph.D. thesis, Universität Kiel, Institut für Merreskunde, 132 pp.

  • Eden, C., and J. Willebrand, 2001: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14 , 22662280.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35 , 18911910.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport, and mixing from hydrographic data. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Getzlaff, J., C. W. Böning, C. Eden, and A. Biastoch, 2005: Signal propagation related to the North Atlantic overturning. Geophys. Res. Lett., 32 .L09602, doi:10.1029/2004GL021002.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., and P. B. Rhines, 2004: Decline of subpolar North Atlantic circulation during the 1990s. Science, 304 , 555559.

  • Hall, M. M., and H. L. Bryden, 1982: Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res., 29 , 339359.

  • Hirschi, J., P. Killworth, and J. R. Blundell, 2007: Subannual, seasonal, and interannual variability of the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37 , 12461265.

    • Search Google Scholar
    • Export Citation
  • Hoteit, I., B. Cornuelle, A. Köhl, and D. Stammer, 2005: Treating strong adjoint sensitivities in tropical eddy-permitting variational data assimilation. Quart. J. Roy. Meteor. Soc., 613 , 36593682.

    • Search Google Scholar
    • Export Citation
  • Hsieh, W. W., M. K. Davey, and R. C. Wajsowicz, 1983: The free Kelvin wave in finite-difference numerical models. J. Phys. Oceanogr., 23 , 13831397.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2001: The dynamics of ocean heat transport. Rev. Geophys., 39 , 385411.

  • Jerlov, N. G., 1968: Optical Oceanography. Elsevier, 194 pp.

  • Kanzow, T., and Coauthors, 2007: Observed flow compensation associated with the MOC at 26.5°N in the Atlantic. Science, 317 , 938941.

    • Search Google Scholar
    • Export Citation
  • Käse, R. H., 2006: A Riccati model for Denmark Strait overflow variability. J. Geophys. Res., 33 .L21S09, doi:10.1029/2006GL026915.

  • Kieke, D., and M. Rhein, 2006: Variability of the overflow water transport in the western subpolar North Atlantic, 1950–97. J. Phys. Oceanogr., 36 , 435456.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2005: Anomalies of meridional overturning: Mechanisms in the North Atlantic. J. Phys. Oceanogr., 35 , 14551472.

  • Köhl, A., and J. Willebrand, 2002: An adjoint method for the assimilation of statistical characteristics into eddy-resolving ocean models. Tellus, 54A , 406425.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., and D. Stammer, 2004: Optimal observations for variational data assimilation. J. Phys. Oceanogr., 34 , 529542.

  • Köhl, A., and D. Stammer, 2008: Decadal sea level changes in the 50-year GECCO ocean synthesis. J. Climate, 21 , 18761890.

  • Köhl, A., D. Dommenget, K. Ueyoshi, and D. Stammer, 2006: The global ECCO 1952 to 2001 ocean synthesis. National Oceanography Partnership Program ECCO Rep. 40, 44 pp. [Available online at http://www.ecco-group.org/report_series.htm.].

  • Köhl, A., R. Käse, D. Stammer, and N. Serra, 2007a: Causes of changes in the Denmark Strait Overflow. J. Phys. Oceanogr., 37 , 16781696.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., D. Stammer, and B. Cornuelle, 2007b: Interannual to decadal changes in the ECCO global WOCE synthesis. J. Phys. Oceanogr., 37 , 313337.

    • Search Google Scholar
    • Export Citation
  • Koltermann, K. P., A. V. Sokov, V. P. Tereschenkov, S. A. Dobroliubov, K. Lorbacher, and A. Sy, 1999: Decadal changes in the thermohaline circulation of the North Atlantic. Deep-Sea Res. II, 46 , 109138.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. Williams, and S. C. Doney, 1994: Ocean vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Latif, M., C. Böning, J. Willebrand, A. Biastoch, J. Dengg, N. Keenlyside, U. Schweckendiek, and G. Madec, 2006: Is the thermohaline circulation changing? J. Climate, 19 , 46314637.

    • Search Google Scholar
    • Export Citation
  • Lazier, J. R., A. Hendry, A. Clarke, I. Yashayaev, and P. Rhines, 2002: Convection and restratification in the Labrador Sea. Deep-Sea Res. I, 49 , 18191835.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and J. Marotzke, 1998: Seasonal cycle of meridional overturning and heat transport of the Indian Ocean. J. Phys. Oceanogr., 28 , 923934.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., K. G. Speer, and K. P. Koltermann, 2008: Transport across 48°N in the Atlantic Ocean. J. Phys. Oceanogr., 38 , 733742.

  • Macrander, A., U. Send, H. Valdimarsson, S. Jónsson, and R. H. Käse, 2005: Interannual changes in the overflow from the Nordic Seas into the Atlantic Ocean through Denmark Strait. Geophys. Res. Lett., 32 .L06606, doi:10.1029/2004GL021463.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1993: Century-scale effects of increased atmospheric CO2 on the ocean–atmosphere system. Nature, 364 , 215218.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7 , 952956.

  • Pickard, R. S., and M. A. Spall, 2007: Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37 , 22072227.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12 , 11541158.

  • Roemmich, D., and C. Wunsch, 1984: Apparent changes in the climatic state of the deep North Atlantic Ocean. Nature, 307 , 447450.

  • Schott, F. A., J. Fischer, M. Dengler, and R. Zantopp, 2006: Variability of the Deep Western Boundary Current east of the Grand Banks. Geophys. Res. Lett., 33 .L21S07, doi:10.1029/2006GL026563.

    • Search Google Scholar
    • Export Citation
  • Schweckendiek, U., and J. Willebrand, 2005: Mechanisms affecting the overturning response in global warming simulations. J. Climate, 18 , 49254936.

    • Search Google Scholar
    • Export Citation
  • Sime, L. C., D. P. Stevens, K. J. Heywood, and K. I. C. Oliver, 2006: A decomposition of the Atlantic meridional overturning. J. Phys. Oceanogr., 36 , 22532270.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277 , 195196.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2002: Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107 .3118, doi:10.1029/2001JC000888.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2003: Volume, heat, and freshwater transports of the global ocean circulation 1993–2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data. J. Geophys. Res., 108 .3007, doi:10.1029/2001JC001115.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., K. Ueyoshi, A. Köhl, W. G. Large, S. A. Josey, and C. Wunsch, 2004: Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data assimilation. J. Geophys. Res., 109 .C05023, doi:10.1029/2003JC002082.

    • Search Google Scholar
    • Export Citation
  • Stramma, L., M. Rhein, P. Brandt, M. Dengler, C. Böning, and M. Walter, 2005: Upper ocean circulation in the western tropical Atlantic in boreal fall 2000. Deep-Sea Res. I, 52 , 221240.

    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., and K. G. Speer, 2004: Representativeness of meridional hydrographic sections in the western South Atlantic. J. Mar. Res., 62 , 3765.

    • Search Google Scholar
    • Export Citation
  • Willebrand, J., and Coauthors, 2001: Circulation characteristics in three eddy-permitting models of the North Atlantic. Prog. Oceanogr., 48 , 123161.

    • Search Google Scholar
    • Export Citation
  • Wood, R. A., A. B. Keen, J. F. B. Mitchell, and J. M. Gregory, 1999: Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature, 399 , 572575.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2006: Decadal changes in the North Atlantic meridional overturning and heat flux. J. Phys. Oceanogr., 36 , 20122024.

    • Search Google Scholar
    • Export Citation
  • Yule, G. U., 1907: On the theory of correlation for any number of variables treated by a new system of notation. Proc. Roy. Soc. London, 79A , 182193.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 189 78 11
PDF Downloads 109 34 5

Variability of the Meridional Overturning in the North Atlantic from the 50-Year GECCO State Estimation

Armin KöhlInstitut für Meereskunde, Zentrum für Meeres- und Klimaforschung, Universität Hamburg, Hamburg, Germany

Search for other papers by Armin Köhl in
Current site
Google Scholar
PubMed
Close
and
Detlef StammerInstitut für Meereskunde, Zentrum für Meeres- und Klimaforschung, Universität Hamburg, Hamburg, Germany

Search for other papers by Detlef Stammer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The German partner of the consortium for Estimating the Circulation and Climate of the Ocean (GECCO) provided a dynamically consistent estimate of the time-varying ocean circulation over the 50-yr period 1952–2001. The GECCO synthesis combines most of the data available during the entire estimation period with the ECCO–Massachusetts Institute of Technology (MIT) ocean circulation model using its adjoint. This GECCO estimate is analyzed here for the period 1962–2001 with respect to decadal and longer-term changes of the meridional overturning circulation (MOC) of the North Atlantic. A special focus is on the maximum MOC values at 25°N. Over this period, the dynamically self-consistent synthesis stays within the error bars of H. L. Bryden et al., but reveals a general increase of the MOC strength. The variability on decadal and longer time scales is decomposed into contributions from different processes. Changes in the model’s MOC strength are strongly influenced by the southward communication of density anomalies along the western boundary originating from the subpolar North Atlantic, which are related to changes in the Denmark Strait overflow but are only marginally influenced by water mass formation in the Labrador Sea. The influence of density anomalies propagating along the southern edge of the subtropical gyre associated with baroclinically unstable Rossby waves is found to be equally important. Wind-driven processes such as local Ekman transport explain a smaller fraction of the variability on those long time scales.

Corresponding author address: Armin Köhl, Institut für Meereskunde, Zentrum für Meeres- und Klimaforschung, Universität Hamburg, Bundesstrasse 53, 20146 Hamburg, Germany. Email: armin.koehl@zmaw.de

Abstract

The German partner of the consortium for Estimating the Circulation and Climate of the Ocean (GECCO) provided a dynamically consistent estimate of the time-varying ocean circulation over the 50-yr period 1952–2001. The GECCO synthesis combines most of the data available during the entire estimation period with the ECCO–Massachusetts Institute of Technology (MIT) ocean circulation model using its adjoint. This GECCO estimate is analyzed here for the period 1962–2001 with respect to decadal and longer-term changes of the meridional overturning circulation (MOC) of the North Atlantic. A special focus is on the maximum MOC values at 25°N. Over this period, the dynamically self-consistent synthesis stays within the error bars of H. L. Bryden et al., but reveals a general increase of the MOC strength. The variability on decadal and longer time scales is decomposed into contributions from different processes. Changes in the model’s MOC strength are strongly influenced by the southward communication of density anomalies along the western boundary originating from the subpolar North Atlantic, which are related to changes in the Denmark Strait overflow but are only marginally influenced by water mass formation in the Labrador Sea. The influence of density anomalies propagating along the southern edge of the subtropical gyre associated with baroclinically unstable Rossby waves is found to be equally important. Wind-driven processes such as local Ekman transport explain a smaller fraction of the variability on those long time scales.

Corresponding author address: Armin Köhl, Institut für Meereskunde, Zentrum für Meeres- und Klimaforschung, Universität Hamburg, Bundesstrasse 53, 20146 Hamburg, Germany. Email: armin.koehl@zmaw.de

Save