• Aiki, H., and T. Yamagata, 2000: Successive formation of planetary lenses in an intermediate layer. Geophys. Astrophys. Fluid Dyn., 92 , 129.

    • Search Google Scholar
    • Export Citation
  • Aiki, H., and T. Yamagata, 2004: A numerical study on the successive formation of Meddy-like lenses. J. Geophys. Res., 109 .C06020, doi:10.1029/2003JC001952.

    • Search Google Scholar
    • Export Citation
  • Aiki, H., and T. Yamagata, 2006: Energetics of the layer-thickness form drag based on an integral identity. Ocean Sci., 2 , 161171.

  • Aiki, H., T. Jacobson, and T. Yamagata, 2004: Parameterizing ocean eddy transports from surface to bottom. Geophys. Res. Lett., 31 .L19302, doi:10.1029/2004GL020703.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1983: A finite-amplitude Eliassen–Palm theorem in isentropic coordinates. J. Atmos. Sci., 40 , 18771883.

  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Best, S. E., V. O. Ivchenko, K. J. Richards, R. D. Smith, and R. C. Malone, 1999: Eddies in numerical models of the Antarctic Circumpolar Current and their influence on the mean flow. J. Phys. Oceanogr., 29 , 328350.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 1985: On the conversion between mean and eddy components of potential and kinetic energy in isentropic and isopycnic coordinates. Dyn. Atmos. Oceans, 9 , 1737.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., and R. G. Budich, 1992: Eddy dynamics in a primitive equation model: Sensitivity to horizontal resolution and friction. J. Phys. Oceanogr., 22 , 361381.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., E. P. Chassignet, and B. Tang, 1990: Westward motion of mesoscale eddies. J. Phys. Oceanogr., 20 , 758768.

  • De Szoeke, R. A., and A. F. Bennett, 1993: Microstructure fluxes across density surfaces. J. Phys. Oceanogr., 23 , 22542264.

  • Ferreira, D., and J. Marshall, 2006: Formulation and implementation of a “residual-mean” ocean circulation model. Ocean Modell., 13 , 86107.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25 , 463474.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1998: Exploring the relationship between eddy-induced transport velocity, vertical momentum transfer, and the isopycnal flux of potential vorticity. J. Phys. Oceanogr., 28 , 422432.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and K. G. Lamb, 1990: On parameterizing vertical mixing of momentum in non-eddy-resolving ocean models. J. Phys. Oceanogr., 20 , 16341637.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and T. J. McDougall, 2003: The non-Boussinesq temporal residual mean. J. Phys. Oceanogr., 33 , 12311239.

  • Griffies, S. M., 2004: Fundamentals of Ocean Climate Models. Princeton University Press, 518 pp.

  • Haney, R. L., 1991: On the pressure gradient force over steep topography in sigma coordinate ocean models. J. Phys. Oceanogr., 21 , 610619.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., P. de Vries, and G. J. van Oldenborgh, 2001: Do tropical cells ventilate the Indo-Pacific equatorial thermocline? Geophys. Res. Lett., 28 , 17631766.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and T. Schneider, 1999: The surface branch of the zonally averaged mass transport circulation in the troposphere. J. Atmos. Sci., 56 , 16881697.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V. O., K. J. Richards, and D. P. Stevens, 1996: The dynamics of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 26 , 753774.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, T., 2001: Atmospheric energy cycle viewed from wave–mean-flow interaction and Lagrangian mean circulation. J. Atmos. Sci., 58 , 30363052.

    • Search Google Scholar
    • Export Citation
  • Jacobson, T., and H. Aiki, 2006: An exact energy for TRM theory. J. Phys. Oceanogr., 36 , 558564.

  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36 , 3953.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kasahara, A., 1974: Various vertical coordinate system used for numerical weather prediction. Mon. Wea. Rev., 102 , 509522.

  • Killworth, P. D., 2001: Boundary conditions on quasi-Stokes velocities in parameterizations. J. Phys. Oceanogr., 31 , 11321155.

  • Killworth, P. D., and M. M. Nanneh, 1994: Isopycnal momentum budget of the Antarctic Circumpolar Current in the Fine Resolution Antarctic Model. J. Phys. Oceanogr., 24 , 12011223.

    • Search Google Scholar
    • Export Citation
  • Krupitsky, A., and M. A. Cane, 1997: A two-layer wind-driven ocean model in a multiply connected domain with bottom topography. J. Phys. Oceanogr., 27 , 23952404.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45 .RG2001, doi:10.1029/2004RG000166.

    • Search Google Scholar
    • Export Citation
  • Lee, M-M., and H. Leach, 1996: Eliassen–Palm flux and eddy potential vorticity flux for a nonquasigeostrophic time-mean flow. J. Phys. Oceanogr., 26 , 13041319.

    • Search Google Scholar
    • Export Citation
  • Lee, M-M., and A. Coward, 2003: Eddy mass transport for the Southern Ocean in an eddy-permitting global ocean model. Ocean Modell., 5 , 249266.

    • Search Google Scholar
    • Export Citation
  • Lee, M-M., A. J. G. Nurser, A. C. Coward, and B. A. de Cuevas, 2007: Eddy advective and diffusive transports of heat and salt in the Southern Ocean. J. Phys. Oceanogr., 37 , 13761393.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7 , 157167.

  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13 , 292309.

  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33 , 23412354.

    • Search Google Scholar
    • Export Citation
  • Masina, S., S. G. H. Philander, and A. B. G. Bush, 1999: An analysis of tropical instability waves in a numerical model of the Pacific Ocean. 2. Generation and energetics of the waves. J. Geophys. Res., 104 , 2963729661.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean—Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simulator, 1 , 3556.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1998: Three-dimensional residual-mean theory. Ocean Modelling and Parameterization, E. P. Chassignet and J. Verron, Eds., Kluwer Academic, 269–302.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31 , 12221246.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and P. R. Gent, 1994: The wind-driven ocean circulation with an isopycnal-thickness mixing parameterization. J. Phys. Oceanogr., 24 , 4665.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., W. R. Holland, and J. H. S. Chow, 1978: A description of numerical Antarctic Circumpolar Currents. Dyn. Atmos. Oceans, 2 , 213291.

    • Search Google Scholar
    • Export Citation
  • Mellor, G., T. Ezer, and L-Y. Oey, 1994: The pressure gradient conundrum of sigma coordinate ocean models. J. Atmos. Oceanic Technol., 11 , 11261134.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and R. B. Scott, 2007: Bathymetric influence on mean currents in two high-resolution near-global ocean models. Ocean Modell., 16 , 7694.

    • Search Google Scholar
    • Export Citation
  • Miyazawa, Y., X. Guo, and T. Yamagata, 2004: Roles of mesoscale eddies in the Kuroshio paths. J. Phys. Oceanogr., 34 , 22032222.

  • Nakamura, M., and T. Kagimoto, 2006a: Potential vorticity and eddy potential enstrophy in the North Atlantic Ocean simulated by a global eddy-resolving model. Dyn. Atmos. Oceans, 41 , 2859.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., and T. Kagimoto, 2006b: Transient wave activity and its fluxes in the North Atlantic Ocean simulated by a global eddy-resolving model. Dyn. Atmos. Oceans, 41 , 6084.

    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., and M-M. Lee, 2004: Isopycnal averaging at constant height. Part I: The formulation and a case study. J. Phys. Oceanogr., 34 , 27212739.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., 1998: Comments on “On the obscurantist physics of ‘form drag’ in theorizing about the Circumpolar Current”. J. Phys. Oceanogr., 28 , 16471654.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., and V. O. Ivchenko, 2001: On the meridional circulation and balance of momentum in the Southern Ocean of POP. Ocean Dyn., 52 , 7993.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., and M. Visbeck, 2005: A model of the zonally averaged stratification and overturning in the Southern Ocean. J. Phys. Oceanogr., 35 , 11901205.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 2000: MOM 3.0 Manual. NOAA/Geophysical Fluid Dynamics Laboratory, 680 pp.

  • Plumb, R. A., 1983: A new look at the energy cycle. J. Atmos. Sci., 40 , 16691688.

  • Rhines, P., 1979: Geostrophic turbulence. Annu. Rev. Fluid Mech., 11 , 404441.

  • Rhines, P., 1982: Basic dynamics of the large-scale geostrophic circulation. 1982 Summer Study Program in Geophysical Fluid Dynamics: Particle Motions in Fluids, Woods Hole Oceanographic Institution, 1–47.

    • Search Google Scholar
    • Export Citation
  • Rhines, P., and W. R. Holland, 1979: A theoretical discussion of eddy-driven mean flows. Dyn. Atmos. Oceans, 3 , 289325.

  • Røed, L. P., 1997: Energy diagnostics in a 1½-layer, nonisopycnic model. J. Phys. Oceanogr., 27 , 14721476.

  • Shchepetkin, A. F., and J. C. McWilliams, 2003: A method for computing horizontal pressure gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108 .3090, doi:10.1029/2001JC001047.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., 1999: The primitive equations in the stochastic theory of adiabatic stratified turbulence. J. Phys. Oceanogr., 29 , 18651880.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. P., and V. O. Ivchenko, 1997: The zonal momentum balance in an eddy-resolving global-circulation model of the Southern Ocean. Quart. J. Roy. Meteor. Soc., 123 , 929951.

    • Search Google Scholar
    • Export Citation
  • Tanaka, D., T. Iwasaki, S. Uno, M. Ujiie, and K. Miyazaki, 2004: Eliassen–Palm flux diagnosis based on isentropic representation. J. Atmos. Sci., 61 , 23702383.

    • Search Google Scholar
    • Export Citation
  • Uno, S., and T. Iwasaki, 2006: A cascade-type global energy conversion diagram based on wave–mean flow interactions. J. Atmos. Sci., 63 , 32773295.

    • Search Google Scholar
    • Export Citation
  • Wardle, R., and J. Marshall, 2000: Representation of eddies in primitive equation models by a PV flux. J. Phys. Oceanogr., 30 , 24812503.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., J. H. LaCasce, and P. E. Robbins, 1996: On the obscurantist physics of “form drag” in theorizing about the Circumpolar Current. J. Phys. Oceanogr., 26 , 22972301.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., J. H. LaCasce, and P. E. Robbins, 1998: Reply. J. Phys. Oceanogr., 28 , 16551658.

  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28 , 23322340.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36 , 281314.

    • Search Google Scholar
    • Export Citation
  • Zang, X., and C. Wunsch, 2001: Spectral description of low-frequency oceanic variability. J. Phys. Oceanogr., 31 , 30733095.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 159 59 5
PDF Downloads 115 43 3

Energetics of the Global Ocean: The Role of Layer-Thickness Form Drag

Hidenori AikiInternational Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, and Frontier Research Center for Global Change, Japan Agency for Marine–Earth Science and Technology, Yokohama, Japan

Search for other papers by Hidenori Aiki in
Current site
Google Scholar
PubMed
Close
and
Kelvin J. RichardsInternational Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Kelvin J. Richards in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding the role of mesoscale eddies in the global ocean is fundamental to gaining insight into the factors that control the strength of the circulation. This paper presents results of an analysis of a high-resolution numerical simulation. In particular, the authors perform an analysis of energetics in density space. Such an approach clearly demonstrates the role of layer-thickness form drag (residual effects of hydrostatic pressure perturbations), which is hidden in the classical analysis of the energetics of flows. For the first time in oceanic studies, the global distribution of layer-thickness form drag is determined. This study provides direct evidence to verify some basic characteristics of layer-thickness form drag that have often been assumed or speculated about in previous theoretical studies. The results justify most of the previous assumptions and speculations, including those associated with (i) the presence of an oceanic energy cycle explaining the relationship between layer-thickness form drag and wind forcing, (ii) the manner in which layer-thickness form drag removes the energy of vertically sheared geostrophic currents, and (iii) the reason why the work of layer-thickness form drag nearly balances the work of eddy-induced overturning circulation in each vertical column. However, the result of the analysis disagrees with speculation in previous studies that the layer-thickness form drag in the Antarctic Circumpolar Current is the agent that transfers the wind-induced momentum near the sea surface downward to the bottom layers. The authors present a new interpretation: the layer-thickness form drag reduces (and thereby cancels) the vertical shear resulting from the eddy-induced overturning circulation (rather than the vertical shear resulting from the surface wind stress). This interpretation is consistent with the results of the energy analysis conducted in this study.

Corresponding author address: Hidenori Aiki, IPRC/SOEST, University of Hawaii, 1680 East West Road, POST Bldg., 4th Floor, Honolulu, HI 96822. Email: haiki@hawaii.edu

Abstract

Understanding the role of mesoscale eddies in the global ocean is fundamental to gaining insight into the factors that control the strength of the circulation. This paper presents results of an analysis of a high-resolution numerical simulation. In particular, the authors perform an analysis of energetics in density space. Such an approach clearly demonstrates the role of layer-thickness form drag (residual effects of hydrostatic pressure perturbations), which is hidden in the classical analysis of the energetics of flows. For the first time in oceanic studies, the global distribution of layer-thickness form drag is determined. This study provides direct evidence to verify some basic characteristics of layer-thickness form drag that have often been assumed or speculated about in previous theoretical studies. The results justify most of the previous assumptions and speculations, including those associated with (i) the presence of an oceanic energy cycle explaining the relationship between layer-thickness form drag and wind forcing, (ii) the manner in which layer-thickness form drag removes the energy of vertically sheared geostrophic currents, and (iii) the reason why the work of layer-thickness form drag nearly balances the work of eddy-induced overturning circulation in each vertical column. However, the result of the analysis disagrees with speculation in previous studies that the layer-thickness form drag in the Antarctic Circumpolar Current is the agent that transfers the wind-induced momentum near the sea surface downward to the bottom layers. The authors present a new interpretation: the layer-thickness form drag reduces (and thereby cancels) the vertical shear resulting from the eddy-induced overturning circulation (rather than the vertical shear resulting from the surface wind stress). This interpretation is consistent with the results of the energy analysis conducted in this study.

Corresponding author address: Hidenori Aiki, IPRC/SOEST, University of Hawaii, 1680 East West Road, POST Bldg., 4th Floor, Honolulu, HI 96822. Email: haiki@hawaii.edu

Save