• Adkins, J. F., K. McIntyre, and D. P. Schrag, 2002: The salinity, temperature, and δ18O of the glacial deep ocean. Science, 298 , 17691773.

    • Search Google Scholar
    • Export Citation
  • Bainbridge, A. E., 1981: GEOSECS Atlantic expeditions. Hydrographic Data 1972–1973, Vol. 1, International Decade of Ocean Exploration, National Science Foundation, 121 pp.

    • Search Google Scholar
    • Export Citation
  • Baringer, M., and J. Price, 1997: Mixing and spreading of the Mediterranean Outflow. J. Phys. Oceanogr., 27 , 16541677.

  • Bickert, T., and A. Mackensen, 2003: Late Glacial to Holocene changes in South Atlantic deep water circulation. The South Atlantic in the Late Quaternary—Reconstruction of Material Budget and Current Systems, G. Wefer, S. Mulitza, and V. Rathmeyer, Eds., Springer-Verlag, 671–693.

    • Search Google Scholar
    • Export Citation
  • Bigg, G. R., and E. J. Rohling, 2000: An oxygen isotope data set for marine waters. J. Geophys. Res., 105 , 85278535.

  • Boyle, E. A., 1992: Cadmium and δ13C paleochemical ocean distributions during the stage 2 glacial maximum. Annu. Rev. Earth Planet. Sci., 20 , 245287.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., R. E. Davis, and C. B. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res., 23 , 559582.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., H. R. Longworth, and S. A. Cuningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 438 , 655657. doi:10.1038/nature04385.

    • Search Google Scholar
    • Export Citation
  • Chen, C-T., and F. J. Millero, 1977: Speed of sound in seawater at high pressures. J. Acoust. Soc. Amer., 62 , 11291135.

  • Clark, P. U., and A. C. Mix, 2002: Ice sheets and sea level of the Last Glacial Maximum. Quat. Sci. Rev., 21 , 17.

  • Curry, W. B., and D. W. Oppo, 2005: Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the Western Atlantic Ocean. Paleoceanography, 20 .PA1017, doi:10.1029/2004PA001021.

    • Search Google Scholar
    • Export Citation
  • Del Giorgio, P. A., and C. M. Duarte, 2002: Respiration in the open ocean. Nature, 420 , 379384.

  • Duplessy, J-C., 1972: La géochimie des isotopes stables du carbone dans la mer. Ph.D Note CEA-N-1565, Centre d’Etudes Nucléaires de Saclay, 40–50.

  • Duplessy, J-C., N. J. Shackleton, R. K. Matthews, W. Prell, W. F. Ruddiman, M. Caralp, and C. H. Hendy, 1984: 13C record of benthic foraminifera in the last interglacial ocean: Implications for the carbon cycle and the global deep water circulation. Quat. Res., 21 , 225243.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., R. D. Ray, and B. G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109 .C03003, doi:10.1029/2003JC001973.

    • Search Google Scholar
    • Export Citation
  • Gebbie, J., and P. Huybers, 2006: Meridional circulation during the Last Glacial Maximum explored through a combination of South Atlantic δ18O observations and a geostrophic inverse model. Geochem. Geophys. Geosys., 7 .Q11N07, doi:10.1029/2006GC001383.

    • Search Google Scholar
    • Export Citation
  • Goericke, R., and B. Fry, 1994: Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean. Global Biogeochem. Cycles, 8 , 8590.

    • Search Google Scholar
    • Export Citation
  • Gourestki, V. V., and K. P. Koltermann, 2004: WOCE global hydrographic climatology: A technical report. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie 35, 52 pp. and two CD-ROMS.

  • Hall, M. M., M. McCartney, and J. A. Whitehead, 1997: Antarctic Bottom Water flux in the equatorial western Atlantic. J. Phys. Oceanogr., 27 , 19031926.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J. J-M., and J. Lynch-Stieglitz, 2006: Ocean margin densities and paleoestimates of the Atlantic meridional overturning circulation: A model study. Geochem. Geophys. Geosys., 7 .Q10N04, doi:10.1029/2006GC001301.

    • Search Google Scholar
    • Export Citation
  • Hogg, N., 1983: A note on the deep circulation of the western North Atlantic: Its nature and causes. Deep-Sea Res., 30 , 945961.

  • Hogg, N., R. S. Pickart, R. M. Hendry, and W. J. Smethie, 1986: The Northern recirculation gyre of the Gulf Stream. Deep-Sea Res., 33 , 11391165.

    • Search Google Scholar
    • Export Citation
  • Hogg, N., G. Siedler, and W. Zenk, 1999: Circulation and variability at the southern boundary of the Brazil Basin. J. Phys. Oceanogr., 29 , 145157.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., J. Gebbie, and O. Marchal, 2007: Can paleoceanographic tracers constrain meridional circulation rates? J. Phys. Oceanogr., 37 , 394407.

    • Search Google Scholar
    • Export Citation
  • Kroopnick, P. M., 1985: The distribution of 13C of TCO2 in the world oceans. Deep-Sea Res., 32 , 5784.

  • LeGrand, P., and C. Wunsch, 1995: Constraints from paleotracer data on the North Atlantic circulation during the last glacial maximum. Paleoceanography, 10 , 10111045.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2003: Large-scale vertical and horizontal circulation in the North Atlantic Ocean. J. Phys. Oceanogr., 33 , 19021920.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., W. B. Curry, and N. Slowey, 1999: A geostrophic transport estimate for the Florida Current from oxygen isotope composition of benthic foraminifera. Paleoceanography, 14 , 360373.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., and Coauthors, 2007: Atlantic meridional overturning circulation during the Last Glacial Maximum. Science, 316 , 6669.

    • Search Google Scholar
    • Export Citation
  • Mackensen, A., H-W. Hubberten, T. Bickert, G. Fisher, and D. K. Fütterer, 1993: The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Southern Ocean deep water: Implications for glacial ocean circulation models. Paleoceanography, 8 , 587610.

    • Search Google Scholar
    • Export Citation
  • Marchal, O., and J. Nycander, 2004: Nonuniform upwelling in a shallow-water model of the Antarctic Bottom Water in the Brazil Basin. J. Phys. Oceanogr., 34 , 24922513.

    • Search Google Scholar
    • Export Citation
  • Marchal, O., R. François, and J. Scholten, 2007: Contribution of 230Th measurements to the estimation of the abyssal circulation. Deep-Sea Res., 54 , 557585.

    • Search Google Scholar
    • Export Citation
  • Martel, F., and C. Wunsch, 1993: The North Atlantic circulation in the early 1980s—An estimate from inversion of a finite-difference model. J. Phys. Oceanogr., 23 , 898924.

    • Search Google Scholar
    • Export Citation
  • McCartney, M. S., and R. A. Curry, 1993: Transequatorial flow of Antarctic Bottom Water in the western Atlantic Ocean: Abyssal geostrophy at the equator. J. Phys. Oceanogr., 23 , 12641276.

    • Search Google Scholar
    • Export Citation
  • McCorkle, D. C., and A. L. Holder, 2001: Calibration studies of deep-sea benthic foraminiferal isotopic composition: Results from the southeast Pacific. Eos, Trans. Amer. Geophys. Union, 82 , 473.

    • Search Google Scholar
    • Export Citation
  • Mercier, H., 1986: Determining the general circulation of the ocean: A nonlinear inverse problem. J. Geophys. Res., 91 , 51035109.

  • Mercier, H., and K. Speer, 1998: Transport of bottom water in the Romanche Fracture Zone and the Chain Fracture Zone. J. Phys. Oceanogr., 28 , 779790.

    • Search Google Scholar
    • Export Citation
  • Mercier, H., M. Ollitraut, and P. Y. Le Traon, 1993: An inverse model of the North Atlantic general circulation using Lagrangian float data. J. Phys. Oceanogr., 23 , 689715.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45 , 19772010.

  • Ochoa, J., and N. A. Bray, 1991: Water mass exchange in the Gulf of Cadiz. Deep-Sea Res., 38 , 465503.

  • Olbers, D. J., M. Wenzel, and J. Willebrand, 1985: The inference of North Atlantic circulation patterns from climatological hydrographic data. Rev. Geophys., 23 , 313356.

    • Search Google Scholar
    • Export Citation
  • Oppo, D. W., and M. Horowitz, 2000: Glacial deep water geometry: South Atlantic benthic foraminiferal Cd/Ca and δ13C evidence. Paleoceanography, 15 , 147160.

    • Search Google Scholar
    • Export Citation
  • Ostermann, D. R., and W. B. Curry, 2000: Calibration of stable isotope data: An enriched δ18O standard use for source gas mixing detection and correction. Paleoceanography, 15 , 353360.

    • Search Google Scholar
    • Export Citation
  • Ostlund, H. G., H. Craig, W. S. Broecker, and D. Spencer, 1987: GEOSECS Atlantic, Pacific, and Indian ocean expeditions. Shore-based Data and Graphics, Vol. 7, International Decade of Ocean Exploration, National Science Foundation, 200 pp.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1996: Ocean Circulation Theory. Springer, 453 pp.

  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 , 9396.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and C. Wunsch, 1985: Two transatlantic sections: Meridional circulation and heat flux in the subtropical North Atlantic Ocean. Deep-Sea Res., 32 , 619664.

    • Search Google Scholar
    • Export Citation
  • Sarnthein, M., K. Winn, S. J. A. Jung, J-C. Duplessy, L. Labeyrie, H. Erlenkeuser, and G. Ganssen, 1994: Changes in east Atlantic deepwater circulation over the last 30 000 years: Eight time slice reconstructions. Paleoceanography, 9 , 209267.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., 1995: On the interbasin-scale thermohaline circulation. Rev. Geophys., 33 , 151173.

  • Schmitz, W. J., 1996: On the World Ocean Circulation. Vol. 1. Some Global Features/North Atlantic Circulation, Woods Hole Oceanographic Institution Tech. Rep. WHOI-96-03, 141 pp.

    • Search Google Scholar
    • Export Citation
  • Schrag, D., J. F. Adkins, K. McIntyre, J. L. Alexander, D. A. Hodell, C. D. Charles, and J. F. McManus, 2002: The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quat. Sci. Rev., 21 , 331342.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2001: Large-scale circulations forced by localized mixing over a sloping bottom. J. Phys. Oceanogr., 31 , 23692384.

  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budgets. J. Phys. Oceanogr., 33 , 530560.

    • Search Google Scholar
    • Export Citation
  • Tarantola, A., and B. Valette, 1982: Generalized nonlinear inverse problem solved using the least squares criterion. Rev. Geophys. Space Phys., 20 , 219232.

    • Search Google Scholar
    • Export Citation
  • Vanicek, M., and G. Siedler, 2002: Zonal fluxes in the deep water layers of the western south Atlantic Ocean. J. Phys. Oceanogr., 32 , 22052235.

    • Search Google Scholar
    • Export Citation
  • Winguth, A. M. E., D. Archer, E. Maier-Reimer, and U. Mikolajewicz, 2000: Paleonutrient data analysis of the glacial Atlantic using an adjoint ocean general circulation model. Inverse Methods in Global Biogeochemical Cycles, Vol. 114, Geophys. Monogr., Amer. Geophys. Union, 171–183.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 442 pp.

  • Wunsch, C., 2003: Determining paleoceanographic circulations, with emphasis on the Last Glacial Maximum. Quat. Sci. Rev., 22 , 371385.

    • Search Google Scholar
    • Export Citation
  • Zahn, R., and A. Mix, 1991: Benthic foraminiferal δ18O in the ocean’s temperature-salinity-density field: Constraints on ice age thermohaline circulation. Paleoceanography, 6 , 120.

    • Search Google Scholar
    • Export Citation
  • Zahn, R., M. Sarnthein, and H. Erlenkeuser, 1987: Benthic isotope evidence for changes of the Mediterranean Outflow during the Late Quaternary. Paleoceanography, 2 , 543559.

    • Search Google Scholar
    • Export Citation
  • Zahn, R., J. Schönfeld, H-R. Kudrass, M-H. Park, H. Erlenkeuser, and P. Grootes, 1997: Thermohaline instability in the North Atlantic during meltwater events: Stable isotope and ice-rafted detritus records from core SO75-26KL, Portuguese margin. Paleoceanography, 12 , 696710.

    • Search Google Scholar
    • Export Citation
  • Zenk, W., G. Siedler, B. Lenz, and N. Hogg, 1999: Antarctic Bottom Water flow through the Hunter Channel. J. Phys. Oceanogr., 29 , 27852801.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 114 55 10
PDF Downloads 62 35 5

On the Abyssal Circulation in the Glacial Atlantic

Olivier MarchalWoods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Olivier Marchal in
Current site
Google Scholar
PubMed
Close
and
William B. CurryWoods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by William B. Curry in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An inverse method is used to evaluate the information contained in sediment data for the Atlantic basin during the Last Glacial Maximum (defined here as the time interval 18–21 kyr before present). The data being considered are an updated compilation of the isotopic ratios 18O/16O (δ18O) and 13C/12C (δ13C) of fossil shells of benthic foraminifera (bottom-dwelling organisms). First, an estimate of the abyssal circulation in the modern Atlantic is obtained, which is consistent with (i) climatologies of temperature and salinity of the World Ocean Circulation Experiment, (ii) observational estimates of volume transport at specific locations, and (iii) the statements of a finite-difference geostrophic model. Second, estimates of water properties (δ18O of equilibrium calcite or δ18Oc and δ13C of dissolved inorganic carbon or δ13CDIC) derived from sediment data are combined with this circulation estimate to test their consistency with the modern flow. It is found that more than approximately 80% of water property estimates (δ18Oc or δ13CDIC) are compatible with the modern flow given their uncertainties. The consistency of glacial δ13CDIC estimates with the modern flow could be rejected after two assumptions are made: (i) the uncertainty in these estimates is ±0.1‰ (this uncertainty includes errors in sediment core chronology and oceanic representativity of benthic δ13C, which alone appears better than this value on average); and (ii) δ13CDIC in the glacial deep Atlantic was dominated by a balance between water advection and organic C remineralization. Measurements of δ13C on benthic foraminifera are clearly useful, but the current uncertainties in the distribution and budget of δ13CDIC in the glacial Atlantic must be reduced to increase the power of the test.

Corresponding author address: Olivier Marchal, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: omarchal@whoi.edu

Abstract

An inverse method is used to evaluate the information contained in sediment data for the Atlantic basin during the Last Glacial Maximum (defined here as the time interval 18–21 kyr before present). The data being considered are an updated compilation of the isotopic ratios 18O/16O (δ18O) and 13C/12C (δ13C) of fossil shells of benthic foraminifera (bottom-dwelling organisms). First, an estimate of the abyssal circulation in the modern Atlantic is obtained, which is consistent with (i) climatologies of temperature and salinity of the World Ocean Circulation Experiment, (ii) observational estimates of volume transport at specific locations, and (iii) the statements of a finite-difference geostrophic model. Second, estimates of water properties (δ18O of equilibrium calcite or δ18Oc and δ13C of dissolved inorganic carbon or δ13CDIC) derived from sediment data are combined with this circulation estimate to test their consistency with the modern flow. It is found that more than approximately 80% of water property estimates (δ18Oc or δ13CDIC) are compatible with the modern flow given their uncertainties. The consistency of glacial δ13CDIC estimates with the modern flow could be rejected after two assumptions are made: (i) the uncertainty in these estimates is ±0.1‰ (this uncertainty includes errors in sediment core chronology and oceanic representativity of benthic δ13C, which alone appears better than this value on average); and (ii) δ13CDIC in the glacial deep Atlantic was dominated by a balance between water advection and organic C remineralization. Measurements of δ13C on benthic foraminifera are clearly useful, but the current uncertainties in the distribution and budget of δ13CDIC in the glacial Atlantic must be reduced to increase the power of the test.

Corresponding author address: Olivier Marchal, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: omarchal@whoi.edu

Save