• Allen, S. E., , C. Vindeirinho, , R. E. Thomson, , M. G. Foreman, , and D. L. Mackas, 2001: Physical and biological processes over a submarine canyon during an upwelling event. Can. J. Fish. Aquat. Sci., 58 , 671684.

    • Search Google Scholar
    • Export Citation
  • Allen, S. E., , M. S. Dinniman, , J. M. Klinck, , D. D. Gorby, , A. J. Hewett, , and B. M. Hickey, 2003: On vertical advection truncation errors in terrain-following numerical models: Comparison to a laboratory model for upwelling over submarine canyons. J. Geophys. Res., 108 , 3003. doi:10.1029/2001JC000978.

    • Search Google Scholar
    • Export Citation
  • Bosley, K. L., , J. W. Lavelle, , R. D. Brodeur, , W. W. Wakefield, , R. L. Emmett, , E. T. Baker, , and K. M. Rehmke, 2004: Biological and physical processes in and around Astoria submarine Canyon, Oregon, USA. J. Mar. Syst., 50 , 2137.

    • Search Google Scholar
    • Export Citation
  • Boyer, D. L., , D. B. Haidvogel, , and N. Pérenne, 2004: Laboratory-numerical model comparisons of canyon flows: A parameter study. J. Phys. Oceanogr., 34 , 15881609.

    • Search Google Scholar
    • Export Citation
  • Broenkow, W. W., , and S. J. McKain, 1972: Tidal oscillations at the head of Monterey Submarine Canyon and their relation to oceanographic sampling and the circulation of water in Monterey Bay. Moss Landing Marine Laboratories Tech. Pub. 72-05, 42 pp.

    • Search Google Scholar
    • Export Citation
  • Codiga, D. L., , D. P. Renouard, , and A. M. Fincham, 1999: Experiments on waves trapped over the continental slope and shelf in a continuously stratified rotating ocean, and their incidence on a canyon. J. Mar. Res., 57 , 585612.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., 1994: Introduction to Geophysical Fluid Dynamics. Prentice-Hall, 320 pp.

  • Haidvogel, D. B., 2005: Cross-shelf exchange driven by oscillatory barotropic currents at an idealized coastal canyon. J. Phys. Oceanogr., 35 , 10541067.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., 1997: The response of a steep-sided, narrow canyon to time-variable wind forcing. J. Phys. Oceanogr., 27 , 697726.

  • Kämpf, J., 2006: Transient wind-driven upwelling in a submarine canyon: A process-oriented modeling study. J. Geophys. Res., 111 , C11011. doi:10.1029/2006JC003497.

    • Search Google Scholar
    • Export Citation
  • Kämpf, J., 2007: On the magnitude of upwelling fluxes in shelf-break canyons. Cont. Shelf Res., 27 , 22112223.

  • Kämpf, J., , M. Doubell, , D. Griffin, , R. L. Matthews, , and T. M. Ward, 2004: Evidence of a large seasonal coastal upwelling system along the southern shelf of Australia. Geophys. Res. Lett., 31 , L09310. doi:10.1029/2003GL019221.

    • Search Google Scholar
    • Export Citation
  • Klinck, J., 1996: Circulation near submarine canyons: A modeling study. J. Geophys. Res., 101 , 12111223.

  • Kunze, E., , L. K. Rosenfeld, , G. S. Carter, , and M. C. Gregg, 2002: Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32 , 18901913.

    • Search Google Scholar
    • Export Citation
  • Luyten, P. J., , J. E. Jones, , R. Proctor, , A. Tabor, , P. Tett, , and K. Wild-Allen, 1999: COHERENS—A Coupled Hydrodynamical-Ecological Model for Regional and Shelf Seas: User documentation. Management Unit of the Mathematical Models of the North Sea, Brussels, Belgium, 914 pp.

    • Search Google Scholar
    • Export Citation
  • Mirshak, R., , and S. E. Allen, 2005: Spin-up and the effects of a submarine canyon: Application to upwelling in Astoria Canyon. J. Geophys. Res., 110 , C02013. doi:10.1029/2004JC002578.

    • Search Google Scholar
    • Export Citation
  • Oey, L-Y., , G. L. Mellor, , and R. I. Hires, 1985: A three-dimensional simulation of the Hudson–Raritan estuary. Part I: Description of the model and model simulations. J. Phys. Oceanogr., 15 , 16761692.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., , and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11 , 14431451.

    • Search Google Scholar
    • Export Citation
  • Pérenne, N., , D. B. Haidvogel, , and D. L. Boyer, 2001a: Laboratory–numerical model comparison of flow over a coastal canyon. J. Atmos. Oceanic Technol., 18 , 235255.

    • Search Google Scholar
    • Export Citation
  • Pérenne, N., , J. W. Lavelle, , D. C. Smith, , and D. L. Boyer, 2001b: Impulsively started flow in a submarine canyon: Comparison of results from laboratory and numerical models. J. Atmos. Oceanic Technol., 18 , 16981718.

    • Search Google Scholar
    • Export Citation
  • She, J., , and J. Klinck, 2000: Flow near submarine canyons driven by constant winds. J. Geophys. Res., 105 , 28 67128 694.

  • Thompson, R. O. R. Y., , and T. J. Golding, 1981: Tidally induced “upwelling” by the Great Barrier Reef. J. Geophys. Res., 86 , 65176521.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 23 23 9
PDF Downloads 19 19 11

On the Interaction of Time-Variable Flows with a Shelfbreak Canyon

View More View Less
  • 1 School of Chemistry, Physics and Earth Sciences, Flinders University, Adelaide, South Australia, Australia
© Get Permissions
Restricted access

Abstract

Process-oriented hydrodynamic modeling is employed to study the interaction of along-slope flows with an idealized submarine shelfbreak canyon. The model is forced via prescription of oscillatory flows superposed on steady background flows of various strength and direction. Findings suggest that purely oscillatory flow does not produce significant net onshore transport of dense water. It is rather the steady component of the flow that creates substantial up-canyon flows of ∼0.05 Sv (1 Sv = 106 m3 s−1) in volume transport. This takes place exclusively for flows running on average against the propagation direction of coastal Kelvin waves, whereas flows of the opposite direction operate to suppress cross-shelf density fluxes.

Corresponding author address: Jochen Kämpf, School of Chemistry, Physics and Earth Sciences, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia. Email: jochen.kaempf@flinders.edu.au

Abstract

Process-oriented hydrodynamic modeling is employed to study the interaction of along-slope flows with an idealized submarine shelfbreak canyon. The model is forced via prescription of oscillatory flows superposed on steady background flows of various strength and direction. Findings suggest that purely oscillatory flow does not produce significant net onshore transport of dense water. It is rather the steady component of the flow that creates substantial up-canyon flows of ∼0.05 Sv (1 Sv = 106 m3 s−1) in volume transport. This takes place exclusively for flows running on average against the propagation direction of coastal Kelvin waves, whereas flows of the opposite direction operate to suppress cross-shelf density fluxes.

Corresponding author address: Jochen Kämpf, School of Chemistry, Physics and Earth Sciences, Flinders University, P.O. Box 2100, Adelaide, SA 5001, Australia. Email: jochen.kaempf@flinders.edu.au

Save