• Baturin, N. G., , and P. P. Niiler, 1997: Effects of instability waves in the mixed layer of the equatorial Pacific. J. Geophys. Res., 102 , 27 77127 793.

    • Search Google Scholar
    • Export Citation
  • Bonjean, F., , and G. S. E. Lagerloef, 2002: Diagnostic model of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32 , 29382954.

    • Search Google Scholar
    • Export Citation
  • Brown, J. N., , J. S. Godfrey, , and R. Fiedler, 2007a: A zonal momentum balance on density layers for the central and eastern equatorial Pacific. J. Phys. Oceanogr., 37 , 19391955.

    • Search Google Scholar
    • Export Citation
  • Brown, J. N., , J. S. Godfrey, , and A. Schiller, 2007b: A discussion of flow pathways in the central and eastern equatorial Pacific. J. Phys. Oceanogr., 37 , 13211339.

    • Search Google Scholar
    • Export Citation
  • Bryden, H., , and E. C. Brady, 1989: Eddy momentum and heat fluxes and their effects on the circulation of the equatorial Pacific Ocean. J. Mar. Res., 47 , 5579.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , F. J. Wentz, , C. L. Gentemann, , R. A. de Szoeke, , and M. G. Schlax, 2000: Satellite microwave SST observations of transequatorial tropical instability waves. Geophys. Res. Lett., 27 , 12391242.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14 , 14791498.

    • Search Google Scholar
    • Export Citation
  • Contreras, R. F., 2002: Long-term observations of tropical instability waves. J. Phys. Oceanogr., 32 , 27152722.

  • Cox, M. D., 1980: Generation and propagation of 30-day waves in a numerical model of the Pacific. J. Phys. Oceanogr., 10 , 11681186.

  • de Szoeke, S. P., , S-P. Xie, , T. Miyama, , K. J. Richards, , and R. J. O. Small, 2007: What maintains the SST front north of the eastern Pacific equatorial cold tongue? J. Climate, 20 , 25002514.

    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., , and M. Wimbush, 1998: Model results of flow instabilities in the tropical Pacific Ocean. J. Geophys. Res., 103 , 21 40121 412.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., , M. J. Harrison, , R. C. Pacanowski, , and A. Rosati, 2003: A technical guide to MOM4. GFDL Ocean Group Tech. Rep. 5, NOAA/Geophysical Fluid Dynamics Laboratory, 295 pp.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1 , 4579.

  • Hansen, D. V., , and C. A. Paul, 1984: Genesis and effects of long waves in the equatorial Pacific. J. Geophys. Res., 89 , 10 43110 440.

    • Search Google Scholar
    • Export Citation
  • Hayes, S. P., , L. J. Mangum, , J. Picaut, , A. Sumi, , and K. Takeuchi, 1991: TOGA-TAO: A moored array for real-time measurements in the tropical Pacific Ocean. Bull. Amer. Meteor. Soc., 72 , 339347.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., , P. de Vries, , and G. J. van Oldenborgh, 2001: Do tropical cells ventilate the Indo-Pacific equatorial thermocline? Geophys. Res. Lett., 28 , 17631766.

    • Search Google Scholar
    • Export Citation
  • Johnson, E. S., , and D. S. Luther, 1994: Mean zonal momentum balance in the upper and central equatorial Pacific Ocean. J. Geophys. Res., 99 , 76897705.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , M. J. McPhaden, , and E. Firing, 2001: Equatorial Pacific ocean horizontal velocity, divergence, and upwelling. J. Phys. Oceanogr., 31 , 839849.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., , B. M. Sloyan, , W. S. Kessler, , and K. E. McTaggart, 2002: Direct measurements of upper ocean currents and water properties across the tropical Pacific Ocean during the 1990s. Prog. Oceanogr., 52 , 3161.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., , and B. A. Taft, 1987: Dynamic heights and zonal geostrophic transports in the central tropical Pacific during 1979–84. J. Phys. Oceanogr., 17 , 97122.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., , L. M. Rothstein, , and D. Chen, 1998: The annual cycle of SST in the eastern tropical Pacific, diagnosed in an ocean GCM. J. Climate, 11 , 777799.

    • Search Google Scholar
    • Export Citation
  • Kröger, J., , A. J. Busalacchi, , J. Ballabrera-Poy, , and P. Malanotte-Rizzoli, 2005: Decadal variability of shallow cells and equatorial sea surface temperature in a numerical model of the Atlantic. J. Geophys. Res., 110 , C12003. doi:10.1029/2004JC002703.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G. S. E., , G. T. Mitchum, , R. B. Lukas, , and P. P. Niiler, 1999: Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J. Geophys. Res., 104 , 23 31323 326.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , G. Danabasoglu, , J. C. McWilliams, , P. R. Gent, , and F. O. Bryan, 2001: Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31 , 518536.

    • Search Google Scholar
    • Export Citation
  • Legeckis, R., 1977: Long waves in the equatorial Pacific Ocean: A view from a geostationary satellite. Science, 197 , 11791181.

  • Lu, P., , J. P. McCreary, , and B. A. Klinger, 1998: Meridional circulation cells and the source waters of the Pacific equatorial undercurrent. J. Phys. Oceanogr., 28 , 6284.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., 2002: The cross-equatorial structure of tropical instability waves in sea surface height. Ph.D. thesis, Oregon State University, 134 pp.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., , D. B. Chelton, , R. A. de Szoeke, , and R. M. Samelson, 2005: Tropical instability waves as a resonance between equatorial Rossby waves. J. Phys. Oceanogr., 35 , 232254.

    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., , G. C. Johnson, , and W. S. Kessler, 2007: Distinct 17- and 33-day tropical instability waves in subsurface observations. J. Phys. Oceanogr., 37 , 855872.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1993: TOGA-TAO and the 1991–93 El Niño–Southern Oscillation event. Oceanography, 6 , 3644.

  • Nonaka, M., , S-P. Xie, , and J. P. McCreary, 2002: Decadal variations in the subtropical cells and equatorial Pacific SST. Geophys. Res. Lett., 29 , 1116. doi:10.1029/2001GL013717.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1978: Instabilities of zonal equatorial currents, Part 2. J. Geophys. Res., 83 , 36793682.

  • Picaut, J., , and R. Tournier, 1991: Monitoring the 1979–1985 equatorial Pacific current transports with expendable bathythermograph data. J. Geophys. Res., 96 , 32633277.

    • Search Google Scholar
    • Export Citation
  • Qiao, L., , and R. H. Weisberg, 1995: Tropical instability wave kinematics: Observations from the Tropical Instability Wave Experiment. J. Geophys. Res., 100 , 86778693.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., , C. Frankignoul, , E. Kestenare, , and M. J. McPhaden, 1994: Seasonal variability in the surface currents of the equatorial Pacific. J. Geophys. Res., 99 , 20 32320 344.

    • Search Google Scholar
    • Export Citation
  • Risien, C. M., , and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38 , 23792413.

    • Search Google Scholar
    • Export Citation
  • Schlax, M. G., , and D. B. Chelton, 1992: Frequency domain diagnostics for linear smoothers. J. Amer. Stat. Assoc., 87 , 10701081.

  • Seo, H., , M. Jochum, , R. Murtugudde, , A. J. Miller, , and J. O. Roads, 2007: Feedback of tropical instability-wave-induced atmospheric variability onto the ocean. J. Climate, 23 , 58425855.

    • Search Google Scholar
    • Export Citation
  • Steele, M., , R. Morley, , and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14 , 20792087.

    • Search Google Scholar
    • Export Citation
  • Swenson, M. S., , and D. V. Hansen, 1999: Tropical Pacific Ocean mixed layer heat budget: The Pacific cold tongue. J. Phys. Oceanogr., 29 , 6981.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and M. J. McPhaden, 1999: The surface-layer heat balance in the equatorial Pacific Ocean. Part I: The mean seasonal cycle. J. Phys. Oceanogr., 29 , 18121831.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , and M. J. McPhaden, 2000: The surface-layer heat balance in the equatorial Pacific Ocean. Part II: Interannual variability. J. Phys. Oceanogr., 30 , 29893008.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., , and L. Qiao, 2000: Equatorial upwelling in the central Pacific estimated from moored velocity profilers. J. Phys. Oceanogr., 30 , 105124.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2002: ENSO response to altered climate. Ph.D. thesis, Princeton University, 475 pp.

  • Wittenberg, A. T., , A. Rosati, , N-C. Lau, , and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1981: An estimate of equatorial upwelling in the Pacific. J. Phys. Oceanogr., 11 , 12051214.

  • Yu, L., , and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88 , 527539.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , R. A. Weller, , and B. Sun, 2004: Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988–99) by a synthesis approach. J. Climate, 17 , 373393.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , W. B. Rossow, , A. A. Lacis, , V. Oinas, , and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 , D19105. doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 57 57 6
PDF Downloads 39 39 6

Three-Dimensional Structure of Tropical Cells in the Central Equatorial Pacific Ocean

View More View Less
  • 1 NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington
© Get Permissions
Restricted access

Abstract

The shallow tropical cells (TCs) in the central equatorial Pacific Ocean are characterized by strong equatorial upwelling, near-surface wind-driven poleward flow, downwelling near the cold tongue boundaries, and equatorward flow below the surface mixed layer. Meridional and vertical velocity fluctuations associated with tropical instability waves (TIWs) in the central equatorial Pacific are much larger than those associated with the TCs and can modify the background circulation. OGCM experiments are used to simulate the spinup of the cells along 140°W in response to perturbed trade winds during various phases of the annual cycle. Equatorially modified versions of geostrophy and Ekman theory, and zonal filtering, are used to isolate the large-zonal-scale wind-driven response. Weakening of the trade winds in any season rapidly weakens the TCs, decreases the zonal current shear, and reduces the amplitude and propagation speed of the TIWs. In boreal fall and winter, when the background TCs and TIWs are seasonally strong, the ocean response is equatorially asymmetric (stronger flows north of the equator) and there is evidence of rectification by the modified TIWs onto the TCs. The linear equatorially modified Ekman solutions largely explain the meridional structure and temporal evolution of the anomalous ageostrophic response in the TCs. In fall and winter, however, deviations from the modified Ekman solutions were attributed to interactions with the background TCs and TIWs. An observing system able to quantify the relative contributions of these two processes to the seasonally varying equatorial asymmetry of background circulation would require fine meridional and temporal sampling.

* Pacific Marine Environmental Laboratory Contribution Number 3200.

Corresponding author address: Renellys C. Perez, National Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149. Email: renellys.c.perez@noaa.gov.

Abstract

The shallow tropical cells (TCs) in the central equatorial Pacific Ocean are characterized by strong equatorial upwelling, near-surface wind-driven poleward flow, downwelling near the cold tongue boundaries, and equatorward flow below the surface mixed layer. Meridional and vertical velocity fluctuations associated with tropical instability waves (TIWs) in the central equatorial Pacific are much larger than those associated with the TCs and can modify the background circulation. OGCM experiments are used to simulate the spinup of the cells along 140°W in response to perturbed trade winds during various phases of the annual cycle. Equatorially modified versions of geostrophy and Ekman theory, and zonal filtering, are used to isolate the large-zonal-scale wind-driven response. Weakening of the trade winds in any season rapidly weakens the TCs, decreases the zonal current shear, and reduces the amplitude and propagation speed of the TIWs. In boreal fall and winter, when the background TCs and TIWs are seasonally strong, the ocean response is equatorially asymmetric (stronger flows north of the equator) and there is evidence of rectification by the modified TIWs onto the TCs. The linear equatorially modified Ekman solutions largely explain the meridional structure and temporal evolution of the anomalous ageostrophic response in the TCs. In fall and winter, however, deviations from the modified Ekman solutions were attributed to interactions with the background TCs and TIWs. An observing system able to quantify the relative contributions of these two processes to the seasonally varying equatorial asymmetry of background circulation would require fine meridional and temporal sampling.

* Pacific Marine Environmental Laboratory Contribution Number 3200.

Corresponding author address: Renellys C. Perez, National Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149. Email: renellys.c.perez@noaa.gov.

Save