Eddy Formation in the Tropical Atlantic Induced by Abrupt Changes in the Meridional Overturning Circulation

Marlos Goes Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Marlos Goes in
Current site
Google Scholar
PubMed
Close
,
David P. Marshall Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by David P. Marshall in
Current site
Google Scholar
PubMed
Close
, and
Ilana Wainer Departamento de Oceanografia Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil

Search for other papers by Ilana Wainer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The variability of the meridional overturning circulation (MOC) in the upper tropical Atlantic basin is investigated using a reduced-gravity model in a simplified domain. Four sets of idealized numerical experiments are performed: (i) switch-on of the MOC until a fixed value when a constant northward flow is applied along the western boundary; (ii) MOC with a variable flow; (iii) MOC in a quasi-steady flow; and (iv) shutdown of the MOC in the Northern Hemisphere. Results from experiments (i) show that eddies are generated at the equatorial region by shear instability and detached northward; eddies are responsible for an enhancement of the mean flow and the variability of the MOC. Results from experiments (ii) show a transitional behavior of the MOC related to the eddy generation in interannual–decadal time scales as the Reynolds number varies due to the variations in the MOC. In experiments (iii), a critical Reynolds number Rec around 30 is found, above which eddies are generated. Experiments (iv) demonstrate that even after the collapse of MOC in the Northern Hemisphere, eddies can still be generated and carry energy across the equator into the Northern Hemisphere; these eddies act to attenuate the impact of the MOC shutdown on short time scales. The results described here may be particularly pertinent to ocean general circulation models in which the Reynolds number lies close to the bifurcation point separating the laminar and turbulent regimes.

Corresponding author address: Marlos Goes, Department of Geosciences, The Pennsylvania State University, 411 Deike Building, University Park, PA 16802. Email: mpg14@psu.edu

Abstract

The variability of the meridional overturning circulation (MOC) in the upper tropical Atlantic basin is investigated using a reduced-gravity model in a simplified domain. Four sets of idealized numerical experiments are performed: (i) switch-on of the MOC until a fixed value when a constant northward flow is applied along the western boundary; (ii) MOC with a variable flow; (iii) MOC in a quasi-steady flow; and (iv) shutdown of the MOC in the Northern Hemisphere. Results from experiments (i) show that eddies are generated at the equatorial region by shear instability and detached northward; eddies are responsible for an enhancement of the mean flow and the variability of the MOC. Results from experiments (ii) show a transitional behavior of the MOC related to the eddy generation in interannual–decadal time scales as the Reynolds number varies due to the variations in the MOC. In experiments (iii), a critical Reynolds number Rec around 30 is found, above which eddies are generated. Experiments (iv) demonstrate that even after the collapse of MOC in the Northern Hemisphere, eddies can still be generated and carry energy across the equator into the Northern Hemisphere; these eddies act to attenuate the impact of the MOC shutdown on short time scales. The results described here may be particularly pertinent to ocean general circulation models in which the Reynolds number lies close to the bifurcation point separating the laminar and turbulent regimes.

Corresponding author address: Marlos Goes, Department of Geosciences, The Pennsylvania State University, 411 Deike Building, University Park, PA 16802. Email: mpg14@psu.edu

Save
  • Broecker, W., 1997: Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science, 278 , 1582–1588.

    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., and W. R. Holland, 1989: A high-resolution simulation of the wind- and thermohaline-driven circulation in the North Atlantic Ocean. Parameterization of Small-Scale Processes: Proc. Fifth ‘Aha Huliko ‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 99–115.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., and G. Ierley, 1993: Nonlinear disturbances of the western boundary currents. J. Phys. Oceanogr., 23 , 1727–1735.

  • Cessi, P., K. Bryan, and R. Zhang, 2004: Global seiching of thermocline waters between the Atlantic and the Indian-Pacific Ocean Basins. Geophys. Res. Lett., 31 , L04302. doi:10.1029/2003GL019091.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28 , 433–460.

    • Search Google Scholar
    • Export Citation
  • Dengler, M., F. A. Schott, C. Eden, P. Brandt, J. Fischer, and R. J. Zantopp, 2004: Break-up of the Atlantic deep western boundary current into eddies at 8°S. Nature, 432 , 1018–1020.

    • Search Google Scholar
    • Export Citation
  • Deshayes, J., and C. Frankignoul, 2005: Spectral characteristics of the response of the meridional overturning circulation to deep-water formation. J. Phys. Oceanogr., 35 , 1813–1825.

    • Search Google Scholar
    • Export Citation
  • Dickson, R. R., and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, rates, and pathways. J. Geophys. Res., 99 , (C6). 12319–12341.

    • Search Google Scholar
    • Export Citation
  • Dong, B-W., and R. T. Sutton, 2002: Adjustment of the coupled ocean–atmosphere system to a sudden change in the Thermohaline Circulation. Geophys. Res. Lett., 29 , 1728. doi:10.1029/2002GL015229.

    • Search Google Scholar
    • Export Citation
  • Edwards, C., and J. Pedlosky, 1998: Dynamics of nonlinear cross-equatorial flow. Part I: Potential vorticity transformation. J. Phys. Oceanogr., 28 , 2382–2406.

    • Search Google Scholar
    • Export Citation
  • Fratantoni, D., W. Johns, T. Townsend, and H. Hurlburt, 2000: Low-latitude circulation and mass transport pathways in a model of the tropical Atlantic Ocean. J. Phys. Oceanogr., 30 , 1944–1966.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrological data. Nature, 408 , 453–457.

    • Search Google Scholar
    • Export Citation
  • Goes, M., R. Molinari, I. da Silveira, and I. Wainer, 2005: Retroflections of the North Brazil Current during February 2002. Deep-Sea Res. I, 52 , 647–667.

    • Search Google Scholar
    • Export Citation
  • Goni, G., and W. Johns, 2003: Synoptic study of warm rings in the North Brazil Current retroflection region using satellite altimetry. Interhemispheric Water Exchange in the Atlantic Ocean, G. J. Goni and P. Malanotte-Rizzoli, Eds., Oceanographic Series, Vol. 68, Elsevier, 335–342.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., E. J. D. Campos, W. Hazeleger, and C. A. Severijns, 2008: Influence of the meridional overturning circulation on tropical Atlantic climate and variability. J. Climate, 21 , 1403–1416.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and A. Beckmann, 1999: Numerical Ocean Circulation Modeling. Imperial College Press, 300 pp.

  • Hazeleger, W., and S. Drijfhout, 2006: Subtropical cells and meridional overturning circulation pathways in the tropical Atlantic. J. Geophys. Res., 111 , C03013. doi:10.1029/2005JC002942.

    • Search Google Scholar
    • Export Citation
  • Hsieh, W. W., M. K. Davey, and R. C. Wajsowicz, 1983: The free Kelvin wave in finite-difference numerical models. J. Phys. Oceanogr., 13 , 1383–1397.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., M. A. Cane, N. Naik, and P. Goodman, 2000: Global adjustment of the thermocline in response to deepwater formation. Geophys. Res. Lett., 27 , 759–762.

    • Search Google Scholar
    • Export Citation
  • Ierley, G. R., and W. R. Young, 1991: Viscous instabilities in the western boundary layer. J. Phys. Oceanogr., 21 , 1323–1332.

  • Jochum, M., and P. Malanotte-Rizzoli, 2003: On the generation of North Brazil Current rings. J. Mar. Res., 61 (2) 147–173.

  • Johns, W., T. Lee, R. Beardsley, J. Candela, R. Limeburner, and B. Castro, 1998: Annual cycle and variability of the North Brazil Current. J. Phys. Oceanogr., 28 , 103–128.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2002a: A theory for the surface Atlantic response to thermohaline variability. J. Phys. Oceanogr., 32 , 1121–1132.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2002b: Localization of abrupt change in the North Atlantic thermohaline circulation. Geophys. Res. Lett., 29 , 1083. doi:10.1029/2001GL014140.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2004: Global teleconnections of meridional overturning circulation anomalies. J. Phys. Oceanogr., 34 , 1702–1722.

    • Search Google Scholar
    • Export Citation
  • Kanzow, T., and Coauthors, 2007: Observed flow compensation associated with the MOC at 26.5°N in the Atlantic. Science, 317 , 938–941.

    • Search Google Scholar
    • Export Citation
  • Kawase, M., 1987: Establishment of deep ocean circulation driven by deep-water production. J. Phys. Oceanogr., 17 , 2294–2317.

  • Killworth, P., 1991: Cross-equatorial geostrophic adjustment. J. Phys. Oceanogr., 21 , 1581–1601.

  • Lee, P. M., 2004: Bayesian Statistics: An Introduction. 3rd ed. Oxford University Press, 351 pp.

  • Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climate teleconnections. Rev. Geophys., 45 , RG2005. doi:10.1029/2005RG000172.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1994: Multiple-century response of a coupled ocean–atmosphere model to an increase of atmospheric carbon dioxide. J. Climate, 7 , 5–23.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., and J. Willebrand, 1991: Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr., 21 , 1372–1385.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45 , 1977–2010.

  • Rahmstorf, S., and A. Ganopolski, 1999: Long-term global warming scenarios computed with an efficient coupled climate model. Climatic Change, 43 , 353–367.

    • Search Google Scholar
    • Export Citation
  • Rooth, C., 1982: Hydrology and ocean circulation. Prog. Oceanogr., 11 , 131–149.

  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305 , 367–371.

  • Salezak, S. T., 1979: Fully multidimensional flux corrected algorithms for fluids. J. Comput. Phys., 31 , 355–362.

  • Sarnthein, M., K. Winn, S. J. A. Jung, J. C. Duplessy, L. Labeyrie, H. Erlenkeuser, and G. Ganssen, 1994: Changes in east Atlantic deep-water circulation over the last 30,000 years – 8 time slice reconstructions. Paleoceanography, 9 , 209–267.

    • Search Google Scholar
    • Export Citation
  • Schlosser, P., G. Bonisch, M. Rhein, and R. Bayer, 1991: Reduction of deep-water formation in the Greenland Sea during the 1980s- Evidence from tracer data. Science, 251 , 1054–1056.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13 , 224–230.

  • Toggweiller, J. R., and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I, 42 , 477–500.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and R. A. Wood, 2004: Timely detection of anthropogenic change in the Atlantic meridional overturning circulation. Geophys. Res. Lett., 31 , L14203. doi:10.1029/2004GL020306.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., and A. E. Gill, 1986: Adjustment of the ocean under buoyancy forces. Part I: The role of Kelvin waves. J. Phys. Oceanogr., 16 , 2097–2114.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 49 3
PDF Downloads 96 46 1