Abstract
Observations of horizontal velocity from two shipboard acoustic Doppler current profilers (ADCPs), as well as wind, temperature, and salinity observations from a cruise during June–July 2001, are used to compute a simplified mean meridional momentum balance of the North Equatorial Countercurrent (NECC) at 95°W. The terms that are retained in the momentum balance and derived using the measurements are the Coriolis and pressure gradient forces, and the vertical divergence of the turbulent stress. All terms were vertically integrated over the surface turbulent layer. The K-profile parameterization (KPP) prescribed Richardson number (Ri) is used to determine the depth of the turbulent boundary layer h at which the turbulent stress and its gradient vanish. At the time of the cruise, surface drifters and altimeter data show the flow structure of the NECC was complicated by the presence of tropical instability waves to the south and a strong Costa Rica Dome to the north. Nonetheless, a consistent, simplified momentum balance for the surface layer was achieved from the time mean of 19 days of repeat transects along 95°W with a 0.5° latitude resolution. The best agreement between the ageostrophic transport determined from the near-surface cruise measurements and the wind-derived Ekman transport was obtained for an Ri of 0.23 ± 0.05. The corresponding h ranges from ∼55 m at 4°N to ∼30 m within the NECC core (4.5°–6°N) and shoaling to just 15 m at 7°N. In general, the mean ageostrophic and Ekman transports decreased from south to north along the 95°W transect, although within the core of the NECC both transports were relatively strong and steady. This study underscores the importance of the southerly wind-driven eastward Ekman transport in the turbulent boundary layer before the NECC becomes fully developed later in the year through indirect forcing from the wind stress curl.
Corresponding author address: Janet Sprintall, 9500 Gilman Dr., La Jolla, CA 92093-0230. Email: jsprintall@ucsd.edu