A Model of Multiple Zonal Jets in the Oceans: Dynamical and Kinematical Analysis

P. Berloff Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom, and Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by P. Berloff in
Current site
Google Scholar
PubMed
Close
,
I. Kamenkovich Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by I. Kamenkovich in
Current site
Google Scholar
PubMed
Close
, and
J. Pedlosky Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by J. Pedlosky in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Multiple alternating zonal jets observed in the ocean are studied with an idealized quasigeostrophic zonal-channel model, with the supercritical, zonal background flow imposed. Both eastward and westward background flows with vertical shear are considered. The underlying nonlinear dynamics is illuminated with analysis of the vertical-mode interactions and time-mean eddy fluxes.

Interactions between the vertical modes are systematically studied. The barotropic component of the jets is maintained by both barotropic–barotropic and baroclinic–baroclinic time-mean interactions; thus, the barotropic component of the jets cannot be accurately simulated with a randomly forced barotropic model. The roles of the vertical-mode interactions in driving the baroclinic component of the jets are also characterized. Not only the first but also the second baroclinic mode is found to be important for maintaining the baroclinic component of the jets, whereas the barotropic component of the jets is maintained mostly by the barotropic and first baroclinic modes.

The properties of the eddy forcing were systematically studied. It is shown that the baroclinic component of the jets is maintained by Reynolds stress forcing and resisted by form stress forcing only in the eastward background flow. In the westward background flow, the jets are maintained by form stress forcing and resisted by Reynolds stress forcing.

The meridional scaling and kinematical properties of the jets are studied as well as the roles of meridional boundaries. The Rhines scaling for meridional spacing of the jets is not generally confirmed, and it is also shown that there are multiple stable equilibria with different numbers of the time-mean jets. It is also found that the jets are associated with alternating weak barriers to the meridional material transport, but the locations of these barriers are not unique and depend on the direction of the background flow and depth. Finally, if the channel is closed with meridional walls, then the jets become more latent but the eddy forcing properties do not change qualitatively.

* Additional affiliation: Department of Mathematics and Grantham Institute for Climate Change, Imperial College London, London, United Kingdom.

+ Current affiliation: Department of Mathematics and Grantham Institute for Climate Change, Imperial College London, London, United Kingdom.

Corresponding author address: Pavel Berloff, Woods Hole Oceanographic Institution, Clark Laboratory, MS#29, Woods Hole, MA 02543. Email: pberloff@whoi.edu

Abstract

Multiple alternating zonal jets observed in the ocean are studied with an idealized quasigeostrophic zonal-channel model, with the supercritical, zonal background flow imposed. Both eastward and westward background flows with vertical shear are considered. The underlying nonlinear dynamics is illuminated with analysis of the vertical-mode interactions and time-mean eddy fluxes.

Interactions between the vertical modes are systematically studied. The barotropic component of the jets is maintained by both barotropic–barotropic and baroclinic–baroclinic time-mean interactions; thus, the barotropic component of the jets cannot be accurately simulated with a randomly forced barotropic model. The roles of the vertical-mode interactions in driving the baroclinic component of the jets are also characterized. Not only the first but also the second baroclinic mode is found to be important for maintaining the baroclinic component of the jets, whereas the barotropic component of the jets is maintained mostly by the barotropic and first baroclinic modes.

The properties of the eddy forcing were systematically studied. It is shown that the baroclinic component of the jets is maintained by Reynolds stress forcing and resisted by form stress forcing only in the eastward background flow. In the westward background flow, the jets are maintained by form stress forcing and resisted by Reynolds stress forcing.

The meridional scaling and kinematical properties of the jets are studied as well as the roles of meridional boundaries. The Rhines scaling for meridional spacing of the jets is not generally confirmed, and it is also shown that there are multiple stable equilibria with different numbers of the time-mean jets. It is also found that the jets are associated with alternating weak barriers to the meridional material transport, but the locations of these barriers are not unique and depend on the direction of the background flow and depth. Finally, if the channel is closed with meridional walls, then the jets become more latent but the eddy forcing properties do not change qualitatively.

* Additional affiliation: Department of Mathematics and Grantham Institute for Climate Change, Imperial College London, London, United Kingdom.

+ Current affiliation: Department of Mathematics and Grantham Institute for Climate Change, Imperial College London, London, United Kingdom.

Corresponding author address: Pavel Berloff, Woods Hole Oceanographic Institution, Clark Laboratory, MS#29, Woods Hole, MA 02543. Email: pberloff@whoi.edu

Save
  • Army, L., 1989: Hydraulic control of zonal currents on a β-plane. J. Fluid Mech., 201 , 357377.

  • Baldwin, M., P. Rhines, H-P. Huang, and M. McIntyre, 2007: The jet-stream conundrum. Science, 315 , 467468.

  • Balk, A., S. Nazarenko, and V. Zakharov, 1990: On the nonlocal turbulence of drift type waves. Phys. Rev. Lett. A, 146 , 217221.

  • Berloff, P., 2005: On rectification of randomly forced flows. J. Mar. Res., 63 , 497527.

  • Berloff, P., J. McWilliams, and A. Bracco, 2002: Material transport in oceanic gyres. Part I: Phenomenology. J. Phys. Oceanogr., 32 , 764796.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009: A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech., 628 , 395425.

    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F., M. Brown, M. Olascoaga, I. Rypina, H. Kocak, and I. Udovydchenkov, 2008: Zonal jets as transport barriers in planetary atmospheres. J. Atmos. Sci., 65 , 33163326.

    • Search Google Scholar
    • Export Citation
  • Chekhlov, A., S. Orszag, S. Sukoriansky, B. Galperin, and I. Staroselsky, 1996: The effect of small-scale forcing on large-scale structures in two-dimensional flows. Physica D., 98 , 321334.

    • Search Google Scholar
    • Export Citation
  • Cox, M., 1987: An eddy-resolving numerical model of the ventilated thermocline: Time dependence. J. Phys. Oceanogr., 17 , 10441056.

  • Danilov, S., and V. Gryanik, 2004: Barotropic beta-plane turbulence in a regime with strong zonal jets revisited. J. Atmos. Sci., 61 , 22832295.

    • Search Google Scholar
    • Export Citation
  • Danilov, S., and D. Gurarie, 2004: Scaling, spectra and zonal jets in beta-plane turbulence. Phys. Fluids, 16 , 25922603.

  • Diamond, P., S-I. Itoh, K. Itoh, and T. Hahm, 2005: Zonal flows in plasma—A review. Plasma Phys. Controlled Fusion, 47 , R35R161.

  • Dritschel, D., and M. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65 , 855874.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T., and R. Scott, 2008: A barotropic model of the angular momentum–Conserving potential vorticity staircase in spherical geometry. J. Atmos. Sci., 65 , 11051136.

    • Search Google Scholar
    • Export Citation
  • Esler, G., 2008: The turbulent equilibration of an unstable baroclinic jet. J. Fluid Mech., 599 , 241268.

  • Farrell, B., and P. Ioannou, 2007: Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci., 64 , 36523665.

  • Farrell, B., and P. Ioannou, 2008: Formation of jets by baroclinic turbulence. J. Atmos. Sci., 65 , 33533375.

  • Firing, E., 1987: Deep zonal currents in the central equatorial Pacific. J. Mar. Res., 45 , 791812.

  • Franco, B., A. Piola, A. Rivas, A. Baldoni, and J. Pisoni, 2008: Multiple thermal fronts near the Patagonian shelf break. Geophys. Res. Lett., 35 , L02607. doi:10.1029/2007GL032066.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., H. Nakano, H-P. Huang, and S. Sukoriansky, 2004: The ubiquitous zonal jets in the atmospheres of giant planets and Earth’s oceans. Geophys. Res. Lett., 31 , L13303. doi:10.1029/2004GL019691.

    • Search Google Scholar
    • Export Citation
  • Greenslade, M., and P. Haynes, 2008: Vertical transition in transport and mixing in baroclinic flows. J. Atmos. Sci., 65 , 11371157.

  • Haidvogel, D., and I. Held, 1980: Homogeneous quasi-geostrophic turbulence driven by a uniform temperature gradient. J. Atmos. Sci., 37 , 26442660.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., and E. Shuckburgh, 2000: Effective diffusivity as a diagnostic of atmospheric transport. Part I: Stratosphere. J. Geophys. Res., 105 , 2277722794.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., D. Poet, and E. Shuckburgh, 2007: Transport and mixing in kinematic and dynamically consistent flows. J. Atmos. Sci., 64 , 36403651.

    • Search Google Scholar
    • Export Citation
  • Herbei, R., I. McKeague, and K. Speer, 2008: Gyres and jets: Inversion of tracer data for ocean circulation structure. J. Phys. Oceanogr., 38 , 11801202.

    • Search Google Scholar
    • Export Citation
  • Hogg, N., and B. Owens, 1999: Direct measurement of the deep circulation within the Brazil basin. Deep-Sea Res. II, 46 , 335353.

  • Hua, B. L., M. D’Orgeville, M. Fruman, C. Menesguen, R. Schopp, P. Klein, and H. Sasaki, 2008: Destabilization of mixed Rossby-Gravity waves and equatorial zonal jets formation. J. Fluid Mech., 610 , 311341.

    • Search Google Scholar
    • Export Citation
  • Huang, H-P., and W. Robinson, 1998: Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci., 55 , 611632.

    • Search Google Scholar
    • Export Citation
  • Huang, H-P., A. Kaplan, E. Curchitser, and N. Maximenko, 2007: The degree of anisotropy for mid-ocean currents from satellite observations and an eddy-permitting model simulation. J. Geophys. Res., 112 , C09005. doi:10.1029/2007JC004105.

    • Search Google Scholar
    • Export Citation
  • Hughes, C., and E. Ash, 2001: Eddy forcing of the mean flow in the Southern Ocean. J. Geophys. Res., 106 , 27132722.

  • Ishioka, K., J. Hasegawa, and S. Yoden, 2007: Asymmetrization mechanism of jet profiles in decaying β-plane turbulence. J. Atmos. Sci., 64 , 33403353.

    • Search Google Scholar
    • Export Citation
  • Ivanov, L., C. Collins, and T. Margolina, 2009: System of quasi-zonal jets off California revealed from satellite altimetry. Geophys. Res. Lett., 36 , L03609. doi:10.1029/2008GL036327.

    • Search Google Scholar
    • Export Citation
  • Ivchenko, V., K. Richards, B. Sinha, and J-O. Wolff, 1997: Parameterization of mesoscale eddy fluxes in zonal ocean flows. J. Mar. Res., 55 , 11271162.

    • Search Google Scholar
    • Export Citation
  • Juckes, M., and M. McIntyre, 1987: A high resolution, one-layer model of breaking planetary waves in the stratosphere. Nature, 328 , 590596.

    • Search Google Scholar
    • Export Citation
  • Kamenkovich, I., P. Berloff, and J. Pedlosky, 2009: Role of eddy forcing in the dynamics of multiple zonal jets in a model of the North Atlantic. J. Phys. Oceanogr., 39 , 13611379.

    • Search Google Scholar
    • Export Citation
  • Kaspi, I., and G. Flierl, 2007: Formation of jets by baroclinic instability on gas planet atmospheres. J. Atmos. Sci., 64 , 31773194.

  • Kondratyev, K., and G. Hunt, 1982: Weather and Climate on Planets. Pergamon Press, 755 pp.

  • Kramer, W., M. van Buren, H. Clercx, and G. van Heijst, 2006: β-plane turbulence in a basin with no-slip boundaries. Phys. Fluids, 18 , 026603. doi:10.1063/1.2173285.

    • Search Google Scholar
    • Export Citation
  • Krauss, W., and C. Boning, 1987: Lagrangian properties of eddy fields in the northern North Atlantic as deduced from satellite-tracked buoys. J. Mar. Res., 45 , 259291.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and I. Held, 2003: Diffusivity, kinetic energy dissipation, and closure theories for the poleward eddy heat flux. J. Atmos. Sci., 60 , 29072916.

    • Search Google Scholar
    • Export Citation
  • Lee, S., 1997: Maintenance of multiple jets in a baroclinic flow. J. Atmos. Sci., 54 , 17261738.

  • Manfroi, A., and W. Young, 1999: Slow evolution of zonal jets on the beta plane. J. Atmos. Sci., 56 , 784800.

  • Manfroi, A., and W. Young, 2002: Stability of β-plane Kolmogorov flow. Physica D., 162 , 208232.

  • Marshall, J., E. Shuckburgh, H. Jones, and C. Hill, 2006: Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr., 36 , 18061821.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32 , L12607. doi:10.1029/2005GL022728.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N., O. Melnichenko, P. Niiler, and H. Sasaki, 2008: Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett., 35 , L08603. doi:10.1029/2008GL033267.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M., 1982: How well do we understand the dynamics of stratospheric warmings? J. Meteor. Soc. Japan, 60 , 3765.

  • McWilliams, J., 1977: A note on a consistent quasigeostrophic model in a multiply connected domain. Dyn. Atmos. Oceans, 1 , 427441.

  • McWilliams, J., 2006: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, 249 pp.

  • Nadiga, B., 2006: On zonal jets in oceans. Geophys. Res. Lett., 33 , L10601. doi:10.1029/2006GL025865.

  • Nakano, H., and H. Hasumi, 2005: A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr., 35 , 474488.

    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., M. Lankhorst, D. Fratantoni, P. Richardson, and W. Zenk, 2006: Zonal intermediate currents in the equatorial Atlantic Ocean. Geophys. Res. Lett., 33 , L05605. doi:10.1029/2005GL025368.

    • Search Google Scholar
    • Export Citation
  • Panetta, L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50 , 20732106.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Phillips, N., 1956: The general circulation of the atmosphere: A numerical experiment. Quart. J. Roy. Meteor. Soc., 82 , 123164.

  • Read, P., Y. H. Yamazaki, S. R. Lewis, P. D. Williams, R. Wordsworth, K. Miki-Yamazaki, J. Sommeria, and H. Didelle, 2007: Dynamics of convectively driven banded jets in the laboratory. J. Atmos. Sci., 64 , 40314052.

    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69 , 417443.

  • Rhines, P., 1994: Jets. Chaos, 4 , 313339.

  • Richards, K., N. Maximenko, F. Bryan, and H. Sasaki, 2006: Zonal jets in the Pacific ocean. Geophys. Res. Lett., 33 , L03605. doi:10.1029/2005GL024645.

    • Search Google Scholar
    • Export Citation
  • Schlax, M., and D. Chelton, 2008: The influence of mesoscale eddies on the detection of quasi-zonal jets in the ocean. Geophys. Res. Lett., 35 , L24602. doi:10.1029/2008GL035998.

    • Search Google Scholar
    • Export Citation
  • Scott, R., and L. Polvani, 2007: Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci., 64 , 31583176.

    • Search Google Scholar
    • Export Citation
  • Shuckburgh, E., and P. Haynes, 2003: Diagnosing transport and mixing using a tracer-based coordinate system. Phys. Fluids, 15 , 33423357.

    • Search Google Scholar
    • Export Citation
  • Sinha, B., and K. Richards, 1999: Jet structure and scaling in Southern Ocean models. J. Phys. Oceanogr., 29 , 11431155.

  • Smith, K., 2004: A local model for planetary atmospheres forced by small-scale convection. J. Atmos. Sci., 61 , 14201433.

  • Smith, K., and G. Vallis, 2002: The scales and equilibration of midocean eddies: Forced-dissipative flow. J. Phys. Oceanogr., 32 , 16991720.

    • Search Google Scholar
    • Export Citation
  • Smith, K., G. Boccaletti, C. Henning, I. Marinov, C. Tam, I. Held, and G. Vallis, 2002: Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech., 469 , 1348.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. Rintoul, 2007a: Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 37 , 13941412.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. Rintoul, 2007b: On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean. J. Geophys. Res., 112 , C07030. doi:10.1029/2006JC004072.

    • Search Google Scholar
    • Export Citation
  • Sommeria, J., S. Meyers, and H. Swinney, 1989: Laboratory model of a planetary eastward jet. Nature, 337 , 5861.

  • Starr, V., 1968: Physics of Negative Viscosity Phenomena. McGraw-Hill, 256 pp.

  • Sukoriansky, S., N. Dikovskaya, and B. Galperin, 2007: On the “arrest” of inverse energy cascade and the Rhines scale. J. Atmos. Sci., 64 , 33123327.

    • Search Google Scholar
    • Export Citation
  • Theiss, J., 2004: Equatorward energy cascade, critical latitude, and the predominance of cyclonic vortices in geostrophic turbulence. J. Phys. Oceanogr., 34 , 16631678.

    • Search Google Scholar
    • Export Citation
  • Thompson, A., and W. Young, 2007: Baroclinic eddy heat fluxes: Zonal flows and energy balance. J. Atmos. Sci., 64 , 32143231.

  • Treguier, A., and L. Panetta, 1994: Multiple zonal jets in a quasigeostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 24 , 22632277.

    • Search Google Scholar
    • Export Citation
  • Treguier, A., N. Hogg, M. Maltrud, K. Speer, and V. Thierry, 2003: The origin of deep zonal flows in the Brazil basin. J. Phys. Oceanogr., 33 , 580599.

    • Search Google Scholar
    • Export Citation
  • Vallis, G., and M. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23 , 13461362.

    • Search Google Scholar
    • Export Citation
  • Williams, G., 1978: Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci., 35 , 13991426.

    • Search Google Scholar
    • Export Citation
  • Wordsworth, R., P. Read, and Y. Yamazaki, 2008: Turbulence, waves, and jets in a differentially heated rotating annulus experiment. Phys. Fluids, 20 , 126602. doi:10.1063/1.2990042.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 319 115 10
PDF Downloads 222 88 6