Observation and Estimation of Lagrangian, Stokes, and Eulerian Currents Induced by Wind and Waves at the Sea Surface

Fabrice Ardhuin Service Hydrographique et Océanographique de la Marine, Brest, France

Search for other papers by Fabrice Ardhuin in
Current site
Google Scholar
PubMed
Close
,
Louis Marié Laboratoire de Physique des Océans, UM 6523 CNRS/IFREMER/IRD/UBO, Brest, France

Search for other papers by Louis Marié in
Current site
Google Scholar
PubMed
Close
,
Nicolas Rascle Laboratoire d’Oceanographie Spatiale, IFREMER, Brest, France

Search for other papers by Nicolas Rascle in
Current site
Google Scholar
PubMed
Close
,
Philippe Forget LSEET, Université du Sud Toulon-Var, CNRS (UMR6017), La Garde CEDEX, France

Search for other papers by Philippe Forget in
Current site
Google Scholar
PubMed
Close
, and
Aron Roland Institut fur Wasserbau und Wasserwirtschaft, Technische Universitat Darmstadt, Darmstadt, Germany

Search for other papers by Aron Roland in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The surface current response to winds is analyzed in a 2-yr time series of a 12-MHz (HF) Wellen Radar (WERA) off the west coast of France. Consistent with previous observations, the measured currents, after filtering tides, are on the order of 1.0%–1.8% of the wind speed, in a direction 10°–40° to the right of the wind, and with systematic trends as a function of wind speed. This Lagrangian current can be decomposed as the vector sum of a quasi-Eulerian current UE, representative of the top 1 m of the water column and part of the wave-induced Stokes drift Uss at the sea surface. Here, Uss is estimated with an accurate numerical wave model using a novel parameterization of wave dissipation processes. Using both observed and modeled wave spectra, Uss is found to be very well approximated by a simple function of the wind speed and significant wave height, generally increasing quadratically with the wind speed. Focusing on a site located 100 km from the mainland, the wave-induced contribution of Uss to the radar measurement has an estimated magnitude of 0.6%–1.3% of the wind speed, in the wind direction—a percentage that increases with wind speed. The difference UE of Lagrangian and Stokes contributions is found to be on the order of 0.4%–0.8% of the wind speed and 45°–70° to the right of the wind. This relatively weak, quasi-Eulerian current with a large deflection angle is interpreted as evidence of strong near-surface mixing, likely related to breaking waves and/or Langmuir circulations. Summer stratification tends to increase the UE response by up to a factor of 2 on average, and further increase the deflection angle of UE by 5°–10°. At locations closer to the coast, Uss is smaller and UE is larger with a smaller deflection angle. These results would be transposable to the World Ocean if the relative part of geostrophic currents in UE was weak, which is expected. This decomposition into Stokes drift and quasi-Eulerian current is most important for the estimation of energy fluxes to the Ekman layer.

* Current affiliation: University of Cape Town, Rondebosch, South Africa.

Corresponding author address: Fabrice Ardhuin, Service Hydrographique et Océanographique de la Marine, 29609 Brest, France. Email: ardhuin@shom.fr

Abstract

The surface current response to winds is analyzed in a 2-yr time series of a 12-MHz (HF) Wellen Radar (WERA) off the west coast of France. Consistent with previous observations, the measured currents, after filtering tides, are on the order of 1.0%–1.8% of the wind speed, in a direction 10°–40° to the right of the wind, and with systematic trends as a function of wind speed. This Lagrangian current can be decomposed as the vector sum of a quasi-Eulerian current UE, representative of the top 1 m of the water column and part of the wave-induced Stokes drift Uss at the sea surface. Here, Uss is estimated with an accurate numerical wave model using a novel parameterization of wave dissipation processes. Using both observed and modeled wave spectra, Uss is found to be very well approximated by a simple function of the wind speed and significant wave height, generally increasing quadratically with the wind speed. Focusing on a site located 100 km from the mainland, the wave-induced contribution of Uss to the radar measurement has an estimated magnitude of 0.6%–1.3% of the wind speed, in the wind direction—a percentage that increases with wind speed. The difference UE of Lagrangian and Stokes contributions is found to be on the order of 0.4%–0.8% of the wind speed and 45°–70° to the right of the wind. This relatively weak, quasi-Eulerian current with a large deflection angle is interpreted as evidence of strong near-surface mixing, likely related to breaking waves and/or Langmuir circulations. Summer stratification tends to increase the UE response by up to a factor of 2 on average, and further increase the deflection angle of UE by 5°–10°. At locations closer to the coast, Uss is smaller and UE is larger with a smaller deflection angle. These results would be transposable to the World Ocean if the relative part of geostrophic currents in UE was weak, which is expected. This decomposition into Stokes drift and quasi-Eulerian current is most important for the estimation of energy fluxes to the Ekman layer.

* Current affiliation: University of Cape Town, Rondebosch, South Africa.

Corresponding author address: Fabrice Ardhuin, Service Hydrographique et Océanographique de la Marine, 29609 Brest, France. Email: ardhuin@shom.fr

Save
  • Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams, W. Drennan, K. Kahma, and S. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath breaking waves. Nature, 359 , 219220.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., 2006: Quelles mesures pour la prévision des états de mer en zone côtiére? [Available online at http://www.ifremer.fr/aei2006/resume_long/T1S3/14-aei2006-55.pdf].

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., F-R. Martin-Lauzer, B. Chapron, P. Craneguy, F. Girard-Ardhuin, and T. Elfouhaily, 2004: Dérive à la surface de l’océan sous l’effet des vagues. Compt. Rend. Géosci., 336 , 11211130. doi:10.1016/j.crte.2004.04.007.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., T. H. C. Herbers, K. P. Watts, G. P. van Vledder, R. Jensen, and H. Graber, 2007: Swell and slanting fetch effects on wind wave growth. J. Phys. Oceanogr., 37 , 908931.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., F. Collard, B. Chapron, P. Queffeulou, J-F. Filipot, and M. Hamon, 2008a: Spectral wave dissipation based on observations: A global validation. Proc. Chinese–German Joint Symp. on Hydraulics and Ocean Engineering, Darmstadt, Germany, Institut für Wasserbau und Wasserwirtschaft, 391–400.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., N. Rascle, and K. A. Belibassakis, 2008b: Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modell., 20 , 3560. doi:10.1016/j.ocemod.2007.07.001.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., B. Chapron, and F. Collard, 2009: Observation of swell dissipation across oceans. Geophys. Res. Lett., 36 , L06607. doi:10.1029/2008GL037030.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and I. R. Young, 2005: Two-phase behaviour of the spectral dissipation of wind waves. Proc. 5th Int. Symp. Ocean Wave Measurement and Analysis, Madrid, Spain, ASCE, 11 pp.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and A. J. van der Westhuysen, 2008: Physics of saturation-based dissipation functions proposed for wave forecast models. J. Phys. Oceanogr., 38 , 18311841.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., A. V. Babanin, and I. R. Young, 2000: Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr., 30 , 31453160.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., J. R. Gemmrich, and D. M. Farmer, 2002: Multiscale measurement of ocean wave breaking probability. J. Phys. Oceanogr., 32 , 33643374.

    • Search Google Scholar
    • Export Citation
  • Barrick, D. E., and B. L. Weber, 1977: On the nonlinear theory for gravity waves on the ocean’s surface. Part II: Interpretation and applications. J. Phys. Oceanogr., 7 , 310.

    • Search Google Scholar
    • Export Citation
  • Battjes, J. A., and J. P. F. M. Janssen, 1978: Energy loss and set-up due to breaking of random waves. Proc. 16th Int. Conf. on Coastal Engineering, Hamburg, Germany, ASCE, 569–587.

    • Search Google Scholar
    • Export Citation
  • Bidlot, J., P. Janssen, and S. Abdalla, 2007: A revised formulation of ocean wave dissipation and its model impact. Tech. Rep. Memo. 509, ECMWF, 29 pp.

    • Search Google Scholar
    • Export Citation
  • Broche, P., J. C. de Maistre, and P. Forget, 1983: Mesure par radar décamétrique cohérent des courants superficiels engendrés par le vent. Oceanol. Acta, 6 , 4353.

    • Search Google Scholar
    • Export Citation
  • Chapman, R. D., L. K. Shay, H. Graber, J. B. Edson, A. Karachintsev, C. L. Trump, and D. B. Ross, 1997: On the accuracy of HF radar surface current measurements: Intercomparisons with ship-based sensors. J. Geophys. Res., 102 , 1873718748.

    • Search Google Scholar
    • Export Citation
  • Chapron, B., F. Collard, and F. Ardhuin, 2005: Direct measurements of ocean surface velocity from space: Interpretation and validation. J. Geophys. Res., 110 , C07008. doi:10.1029/2004JC002809.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and S. E. Belcher, 2000: Effects of long waves on wind-generated waves. J. Phys. Oceanogr., 30 , 22462256.

  • Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24 , 25462559.

    • Search Google Scholar
    • Export Citation
  • Csík, Á, M. Ricchiuto, and H. Deconinck, 2002: A conservative formulation of the multidimensional upwind residual distribution schemes for general nonlinear conservation laws. J. Comput. Phys., 172 , 286312.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1985: Drifter observations of coastal currents during CODE: The method and descriptive view. J. Geophys. Res., 90 , 47414755.

    • Search Google Scholar
    • Export Citation
  • Dobson, F., W. Perrie, and B. Toulany, 1989: On the deep water fetch laws for wind-generated surface gravity waves. Atmos.–Ocean, 27 , 210236.

    • Search Google Scholar
    • Export Citation
  • Ekman, V. W., 1905: On the influence of the Earth’s rotation on ocean currents. Arch. Math. Astron. Phys., 2 , 152.

  • Elipot, S., and R. Lumpkin, 2008: Spectral description of oceanic near-surface variability. Geophys. Res. Lett., 35 , L05606. doi:10.1029/2007GL032874.

    • Search Google Scholar
    • Export Citation
  • Essen, H-H., 1993: Ekman portions of surface currents, as measured by radar in different areas. Deutsche Hydrogr. Z., 45 , 5785.

  • Filipot, J-F., F. Ardhuin, and A. Babanin, 2008: Paramétrage du déferlement des vagues dans les modèles spectraux: Approches semi-empirique et physique. Actes des Xèmes Journées Génie Côtier-Génie Civil, Sophia Antipolis, Centre Français du Littoral, 335–344.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., M. L. Banner, and C. Garrett, 2008: Spectrally resolved energy dissipation rate and momentum flux of breaking waves. J. Phys. Oceanogr., 38 , 12961312.

    • Search Google Scholar
    • Export Citation
  • Gonella, J., 1971: A local study of inertial oscillations in the upper layers of the ocean. Deep-Sea Res., 18 , 776788.

  • Gonella, J., 1972: A rotary-component method for analyzing meteorological and oceanographic vector time series. Deep-Sea Res., 19 , 833846.

    • Search Google Scholar
    • Export Citation
  • Gourrion, J., D. Vandemark, S. Bailey, and B. Chapron, 2002: Investigation of C-band altimeter cross section dependence on wind speed and sea state. Can. J. Remote Sens., 28 , 484489.

    • Search Google Scholar
    • Export Citation
  • Grant, W. D., and O. S. Madsen, 1979: Combined wave and current interaction with a rough bottom. J. Geophys. Res., 84 , 17971808.

  • Gurgel, K-W., and Y. Barbin, 2008: Suppressing radio frequency interference in HF radars. Sea Technol., 49 , 3942.

  • Gurgel, K-W., G. Antonischki, H-H. Essen, and T. Schlick, 1999: Wellen radar (WERA), a new ground-wave based HF radar for ocean remote sensing. Coast. Eng., 37 , 219234.

    • Search Google Scholar
    • Export Citation
  • Hackett, B., Ø Breivik, and C. Wettre, 2006: Forecasting the drift of objects and substances in the ocean. Ocean Weather Forecasting, E. P. Chassignet and J. Verron, Eds., Springer, 507–523.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1970: Wave-driven inertial oscillations. Geophys. Fluid Dyn., 1 , 463502.

  • Hasselmann, S., K. Hasselmann, J. Allender, and T. Barnett, 1985: Computation and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15 , 13781391.

    • Search Google Scholar
    • Export Citation
  • Hauser, D., G. Caudal, S. Guimbard, and A. A. Mouche, 2008: A study of the slope probability density function of the ocean waves from radar observations. J. Geophys. Res., 113 , C02006. doi:10.1029/2007JC004264.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and C-C. Tung, 1976: The dispersion relation for a nonlinear random gravity wave field. J. Fluid Mech., 75 , 337345.

  • Ivonin, D. V., P. Broche, J-L. Devenon, and V. I. Shrira, 2004: Validation of HF radar probing of the vertical shear of surface currents by acoustic Doppler current profiler measurements. J. Geophys. Res., 101 , C04003. doi:10.1029/2003JC002025.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1991: Quasi-linear theory of wind wave generation applied to wave forecasting. J. Phys. Oceanogr., 21 , 16311642.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A. D., 1987: Wind and wave induced currents in a rotating sea with depth-varying eddy viscosity. J. Phys. Oceanogr., 17 , 938951.

    • Search Google Scholar
    • Export Citation
  • Kahma, K. K., and C. J. Calkoen, 1992: Reconciling discrepancies in the observed growth of wind-generated waves. J. Phys. Oceanogr., 22 , 13891405.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 2004: On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modell., 6 , 101124.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., P. Wittmann, M. Sclavo, and S. Carniel, 2009: A preliminary estimate of the Stokes dissipation of wave energy in the global ocean. Geophys. Res. Lett., 36 , L02605. doi:10.1029/2008GL036193.

    • Search Google Scholar
    • Export Citation
  • Kinsman, B., 1965: Wind Waves. Prentice-Hall, 676 pp.

  • Kirby, J. T., and T-M. Chen, 1989: Surface waves on vertically sheared flows: Approximate dispersion relations. J. Geophys. Res., 94 , 10131027.

    • Search Google Scholar
    • Export Citation
  • Kirwan Jr., A. D., G. McNally, S. Pazan, and R. Wert, 1979: Analysis of surface current response to wind. J. Phys. Oceanogr., 9 , 401412.

    • Search Google Scholar
    • Export Citation
  • Le Boyer, A., G. Cambon, N. Daniault, S. Herbette, B. L. Cann, L. Marie, and P. Morin, 2009: Observations of the Ushant tidal front in September 2007. Cont. Shelf Res., 29 , 10261037. doi:10.1016/j.csr.2008.12.020.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and O. M. Phillips, 1962: Phase velocity effects in tertiary wave interactions. J. Fluid Mech., 12 , 333336.

  • Madsen, O. S., 1977: A realistic model of the wind-induced Ekman boundary layer. J. Phys. Oceanogr., 7 , 248255.

  • Mao, Y., and M. L. Heron, 2008: The influence of fetch on the response of surface currents to wind studied by HF ocean surface radar. J. Phys. Oceanogr., 38 , 11071121.

    • Search Google Scholar
    • Export Citation
  • Mariette, V., and B. Le Cann, 1985: Simulation of the formation of the Ushant thermal front. Cont. Shelf Res., 4 , 637.

  • McWilliams, J. C., P. P. Sullivan, and C-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334 , 130.

  • Mellor, G., and A. Blumberg, 2004: Wave breaking and ocean surface layer thermal response. J. Phys. Oceanogr., 34 , 693698.

  • Millot, C., and M. Crépon, 1981: Inertial oscillations on the continental shelf of the Gulf of Lions—Observations and theory. J. Phys. Oceanogr., 11 , 639657.

    • Search Google Scholar
    • Export Citation
  • Nerheim, S., and A. Stigebrandt, 2006: On the influence of buoyancy fluxes on wind drift currents. J. Phys. Oceanogr., 36 , 15911604.

  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28 , 929937.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156 , 505531.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., 1983: Observations of the structure of the upper ocean: Wind-driven momentum budget. Philos. Trans. Roy. Soc. London, A380 , 407425.

    • Search Google Scholar
    • Export Citation
  • Polton, J. A., D. M. Lewis, and S. E. Belcher, 2005: The role of wave-induced Coriolis–Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr., 35 , 444457.

    • Search Google Scholar
    • Export Citation
  • Prandle, D., 1987: The fine-structure of nearshore tidal and residual circulations revealed by H.F. radar surface current measurements. J. Phys. Oceanogr., 17 , 231245.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., and M. A. Sundermeyer, 1999: Stratified Ekman layers. J. Geophys. Res., 104 , 2046720494.

  • Queffeulou, P., 2004: Long term validation of wave height measurements from altimeters. Mar. Geod., 27 , 495510. doi:10.1080/01490410490883478.

    • Search Google Scholar
    • Export Citation
  • Rascle, N., 2007: Impact of waves on the ocean circulation (in French). Ph.D. thesis, Universite de Bretagne Occidentale. [Available online at http://tel.archives-ouvertes.fr/tel-00182250/].

  • Rascle, N., and F. Ardhuin, 2009: Drift and mixing under the ocean surface revisited. stratified conditions and model-data comparisons. J. Geophys. Res., 114 , C02016. doi:10.1029/2007JC004466.

    • Search Google Scholar
    • Export Citation
  • Rascle, N., F. Ardhuin, and E. A. Terray, 2006: Drift and mixing under the ocean surface. a coherent one-dimensional description with application to unstratified conditions. J. Geophys. Res., 111 , C03016. doi:10.1029/2005JC003004.

    • Search Google Scholar
    • Export Citation
  • Rascle, N., F. Ardhuin, P. Queffeulou, and D. Croize-Fillon, 2008: A global wave parameter database for geophysical applications. Part 1: Wave-current–turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Modell., 25 , 154171. doi:10.1016/j.ocemod.2008.07.006.

    • Search Google Scholar
    • Export Citation
  • Rio, M-H., and F. Hernandez, 2003: High-frequency response of wind-driven currents measured by drifting buoys and altimetry over the world ocean. J. Geophys. Res., 108 , 3283. doi:10.1029/2002JC001655.

    • Search Google Scholar
    • Export Citation
  • Roland, A., 2009: Development of WWM II: Spectral wave modelling on unstructured meshes. Ph.D. thesis, Technische Universitat Darmstadt, 212 pp.

  • Santala, M. J., and E. A. Terray, 1992: A technique for making unbiased estimates of current shear from a wave-follower. Deep-Sea Res., 39 , 607622.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., J. Martinez-Pedraja, T. M. Cook, and B. K. Haus, 2007: High-frequency radar mapping of surface currents using WERA. J. Atmos. Oceanic Technol., 24 , 484503.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 2006: Wave-current interactions in finite-depth. J. Phys. Oceanogr., 36 , 14031419.

  • Stewart, R. H., and J. W. Joy, 1974: HF radio measurements of surface currents. Deep-Sea Res., 21 , 10391049.

  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26 , 792807.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2002: Limiters in third-generation wind wave models. Global Atmos. Ocean Sys., 8 , 6783.

  • Tolman, H. L., 2007: The 2007 release of WAVEWATCH III. Proc. 10th Int. Workshop of Wave Hindcasting and Forecasting, Oahu, HI, U.S. Army Engineer Research and Development Center’s Coastal and Hydraulics Laboratory, 12 pp. [Available online at http://www.waveworkshop.org/10thWaves/Papers/oahu07_Q4.pdf].

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2008: A mosaic approach to wind wave modeling. Ocean Modelling, 25 , 3547. doi:10.1016/j.ocemod.2008.06.005.

  • Vandemark, D., B. Chapron, J. Sun, G. H. Crescenti, and H. C. Graber, 2004: Ocean wave slope observations using radar backscatter and laser altimeters. J. Phys. Oceanogr., 34 , 28252842.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and R. X. Huang, 2004: Wind energy input to the surface waves. J. Phys. Oceanogr., 34 , 12761280.

  • Weber, B. L., and D. E. Barrick, 1977: On the nonlinear theory for gravity waves on the ocean’s surface. Part I: Derivations. J. Phys. Oceanogr., 7 , 310.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., and A. J. Bowen, 1994: Wave- and wind-driven flow in water of finite depth. J. Phys. Oceanogr., 24 , 18501866.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2072 398 36
PDF Downloads 1457 368 39