Enhanced Diapycnal Mixing in the South China Sea

Jiwei Tian Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Jiwei Tian in
Current site
Google Scholar
PubMed
Close
,
Qingxuan Yang Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Qingxuan Yang in
Current site
Google Scholar
PubMed
Close
, and
Wei Zhao Physical Oceanography Laboratory, Ocean University of China, Qingdao, China

Search for other papers by Wei Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Profiles of current velocity, temperature, and salinity were obtained in the Internal Wave and Mixing Experiment in the South China Sea (SCS), the Luzon Strait, and the North Pacific. The observations are examined for evidence of enhanced diapycnal mixing in the SCS, which reaches O(10−3 m2 s−1) in magnitude. Results from independent casts reveal that diapycnal diffusivity in the SCS and the Luzon Strait is elevated by two orders of magnitude over that of the smooth bathymetry in the North Pacific, which are typical of background values in an open ocean. The vertical distribution of diapycnal diffusivity is nonuniform in the SCS, exhibiting higher values at depths greater than about 1000 m. This result compares favorably with the direct microstructure measurements at four stations in the SCS. Velocity and density profiles are combined to estimate the internal tide energy flux generated in the Luzon Strait and directed into the SCS. The energy amounts to 10 GW, most of which is rationalized to be the potential energy source for enhanced mixing in the SCS.

Corresponding author address: Jiwei Tian, No. 5, Yushan Road, Physical Oceanography Laboratory, Ocean University of China, Qingdao, 266003, China. Email: jiweitian@hotmail.com

Abstract

Profiles of current velocity, temperature, and salinity were obtained in the Internal Wave and Mixing Experiment in the South China Sea (SCS), the Luzon Strait, and the North Pacific. The observations are examined for evidence of enhanced diapycnal mixing in the SCS, which reaches O(10−3 m2 s−1) in magnitude. Results from independent casts reveal that diapycnal diffusivity in the SCS and the Luzon Strait is elevated by two orders of magnitude over that of the smooth bathymetry in the North Pacific, which are typical of background values in an open ocean. The vertical distribution of diapycnal diffusivity is nonuniform in the SCS, exhibiting higher values at depths greater than about 1000 m. This result compares favorably with the direct microstructure measurements at four stations in the SCS. Velocity and density profiles are combined to estimate the internal tide energy flux generated in the Luzon Strait and directed into the SCS. The energy amounts to 10 GW, most of which is rationalized to be the potential energy source for enhanced mixing in the SCS.

Corresponding author address: Jiwei Tian, No. 5, Yushan Road, Physical Oceanography Laboratory, Ocean University of China, Qingdao, 266003, China. Email: jiweitian@hotmail.com

Save
  • Beardsley, R. C., and Coauthors, 2004: Barotropic tide in the northeast South China Sea. IEEE J. Oceanic Eng., 29 , 10751086.

  • Carter, G. S., and M. C. Gregg, 2002: Intense, variable mixing near the head of Monterey Submarine Canyon. J. Phys. Oceanogr., 32 , 31453165.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., M. C. Gregg, and R-C. Lien, 2005: Internal waves, solitary-like waves, and mixing on the Monterey Bay shelf. Cont. Shelf Res., 25 , 14991520.

    • Search Google Scholar
    • Export Citation
  • Chang, M-H., R-C. Lien, T. Y. Tang, E. A. D’Asaro, and Y. J. Yang, 2006: Energy flux of nonlinear internal waves in northern South China Sea. Geophys. Res. Lett., 33 , L03607. doi:10.1029/2005GL025196.

    • Search Google Scholar
    • Export Citation
  • Duda, T. F., J. F. Lynch, J. D. Irish, R. C. Beardsley, S. R. Ramp, C-S. Chiu, T. Y. Tang, and Y-J. Yang, 2004: Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE J. Oceanic Eng., 29 , 11051130.

    • Search Google Scholar
    • Export Citation
  • Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche Fracture Zone. J. Phys. Oceanogr., 28 , 19291945.

    • Search Google Scholar
    • Export Citation
  • Furue, R., and M. Endoh, 2005: Effects of the Pacific diapycnal mixing and wind stress on the global and Pacific meridional overturning circulation. J. Phys. Oceanogr., 35 , 18761890.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline: A review. J. Geophys. Res., 92 , 52495286.

  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94 , 96869698.

  • Gregg, M. C., and E. Kunze, 1991: Shear and strain in Santa Monica basin. J. Geophys. Res., 96 , 1670916719.

  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial ocean waters. Nature, 422 , 513515.

    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field: An Eikonal approach. J. Geophys. Res., 91 , (C7). 84878495.

    • Search Google Scholar
    • Export Citation
  • Jan, S., C-S. Chern, J. Wang, and S-Y. Chao, 2007: Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J. Geophys. Res., 112 , C06019. doi:10.1029/2006JC004003.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, C-T. Liu, A. K. Liu, and L. David, 2006: Prototypical solitons in the South China Sea. Geophys. Res. Lett., 33 , L11607. doi:10.1029/2006GL025932.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., and J. M. Toole, 1997: Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J. Phys. Oceanogr., 27 , 26632693.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., L. K. Rosenfeld, G. S. Carter, and M. C. Gregg, 2002: Internal waves in Monterey Submarine Canyon. J. Phys. Oceanogr., 32 , 18901913.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open ocean tracer release experiment. Nature, 364 , 701703.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103 , (C10). 2149921529.

  • Ledwell, J. R., E. T. Montogmery, K. L. Polzin, L. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403 , 179181.

    • Search Google Scholar
    • Export Citation
  • Lien, R-C., T. Y. Tang, M. H. Chang, and E. A. D’Asaro, 2005: Energy of nonlinear internal waves in the South China Sea. Geophys. Res. Lett., 32 , L05615. doi:10.1029/2004GL022012.

    • Search Google Scholar
    • Export Citation
  • Lueck, R. G., and T. D. Mudge, 1997: Topographically induced mixing around a shallow seamount. Science, 276 , 18311833.

  • MacKinnon, J. A., and M. C. Gregg, 2003: Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr., 33 , 14761492.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45 , 19772010.

  • Nabatov, V. N., and R. V. Ozmidov, 1988: Study of turbulence above seamounts in the Atlantic Ocean. Oceanology, 28 , 161166.

  • Naveira Garabato, A. C., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303 , 210213.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2004: Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109 , C04027. doi:10.1029/2003JC001923.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10 , 8389.

  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterization of turbulent dissipation. J. Phys. Oceanogr., 25 , 306328.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., K. G. Speer, J. M. Toole, and R. W. Schmitt, 1996: Intense mixing of Antarctic Bottom Water in the equatorial Atlantic Ocean. Nature, 380 , 5457.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 , 9396.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., E. Kunze, J. Hummon, and E. Firing, 2002: The finescale response of lowered ADCP velocity profiles. J. Atmos. Oceanic Technol., 19 , 205223.

    • Search Google Scholar
    • Export Citation
  • Qu, T., J. B. Girton, and J. A. Whitehead, 2006: Deepwater overflow through Luzon Strait. J. Geophys. Res., 111 , C01002. doi:10.1029/2005JC003139.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2003: Thermohaline circulation: The current climate. Nature, 421 , 699.

  • Ramp, S. R., and Coauthors, 2004: Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation. IEEE J. Oceanic Eng., 29 , 11571181.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., S. Hautala, and D. Rudnick, 1996: Northward abyssal transport thorough the Samoan Passage and adjacent regions. J. Geophys. Res., 101 , 1403914055.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal basin. J. Phys. Oceanogr., 31 , 34763495.

    • Search Google Scholar
    • Export Citation
  • Tian, J., L. Zhou, X. Zhang, X. Liang, Q. Zheng, and W. Zhao, 2003: Estimates of M2 internal tide energy fluxes along the margin of Northwestern Pacific using TOPEX/POSEIDON altimeter data. Geophys. Res. Lett., 30 , 1889. doi:10.1029/2003GL018008.

    • Search Google Scholar
    • Export Citation
  • Tian, J., Q. Yang, X. Liang, L. Xie, D. Hu, F. Wang, and T. Qu, 2006: Observation of Luzon Strait transport. Geophys. Res. Lett., 33 , L19607. doi:10.1029/2006GL026272.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., K. L. Polzin, and R. W. Schmitt, 1994: Estimates of diapycnal mixing in the abyssal ocean. Science, 264 , 11201123.

  • Webb, D. J., and N. Suginobara, 2001: Vertical mixing in the ocean. Nature, 409 , 37.

  • Wolk, F., H. Yamazaki, L. Seuront, and R. G. Lueck, 2002: A new fee-fall profiler for measuring biophysical microstructure. J. Atmos. Oceanic Technol., 19 , 780793.

    • Search Google Scholar
    • Export Citation
  • Yang, Y-J., T. Y. Tang, M. H. Chang, A. K. Liu, M-K. Hsu, and S. R. Ramp, 2004: Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE J. Oceanic Eng., 29 , 11821199.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2068 789 258
PDF Downloads 1194 343 24