An Eddifying Parsons Model

Baylor Fox-Kemper Cooperative Institute for Research in Environmental Sciences, and Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Baylor Fox-Kemper in
Current site
Google Scholar
PubMed
Close
and
Raffaele Ferrari Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Raffaele Ferrari in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The time-mean effects of eddies are studied in a model based on the Parsons–Veronis–Huang–Flierl models of the wind-driven gyre. Much of the analysis used for the steady solutions carries over if the model is cast in terms of the thickness-weighted mean velocity, because then mass transport is nondivergent in the absence of diabatic forcing. The model exemplifies the use of residual mean theory to simplify analysis.

A result of the analysis is a boundary layer width in the case of a rapid upper-layer flow and weak lower-layer flow. This boundary layer width is comparable to an eddy mixing length when the typical eddy velocity is taken to be the long Rossby wave phase speed.

Further analysis of the model illustrates important aspects of eddy behavior, model sensitivity to eddy fluxes, and model sensitivity to frictional parameters.

Corresponding author address: Baylor Fox-Kemper, CIRES, University of Colorado, 216 UCB, Attn: Baylor Fox-Kemper, Boulder, CO 80309-0216. Email: bfk@colorado.edu

This article included in the In Honor of Joseph Pedlosky special collection.

Abstract

The time-mean effects of eddies are studied in a model based on the Parsons–Veronis–Huang–Flierl models of the wind-driven gyre. Much of the analysis used for the steady solutions carries over if the model is cast in terms of the thickness-weighted mean velocity, because then mass transport is nondivergent in the absence of diabatic forcing. The model exemplifies the use of residual mean theory to simplify analysis.

A result of the analysis is a boundary layer width in the case of a rapid upper-layer flow and weak lower-layer flow. This boundary layer width is comparable to an eddy mixing length when the typical eddy velocity is taken to be the long Rossby wave phase speed.

Further analysis of the model illustrates important aspects of eddy behavior, model sensitivity to eddy fluxes, and model sensitivity to frictional parameters.

Corresponding author address: Baylor Fox-Kemper, CIRES, University of Colorado, 216 UCB, Attn: Baylor Fox-Kemper, Boulder, CO 80309-0216. Email: bfk@colorado.edu

This article included in the In Honor of Joseph Pedlosky special collection.

Save
  • Andrews, D. G., and M. E. McIntyre, 1978: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89 , 609646.

  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Arbic, B. K., and G. R. Flierl, 2004: Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: Application to midocean eddies. J. Phys. Oceanogr., 34 , 22572273.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., G. R. Flierl, and R. B. Scott, 2007: Cascade inequalities for forced–dissipated geostrophic turbulence. J. Phys. Oceanogr., 37 , 14701487.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., 2005: On dynamically consistent eddy fluxes. Dyn. Atmos. Oceans, 38 , 123146.

  • Cessi, P., and G. R. Ierley, 1995: Symmetry-breaking multiple equilibria in quasigeostrophic, wind-driven flows. J. Phys. Oceanogr., 25 , 11961205.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1955: The Gulf Stream as an inertial boundary layer. Proc. Natl. Acad. Sci. USA, 41 , 731740.

  • Chelton, D., M. Schlax, R. Samelson, and R. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34 , L15606. doi:10.1029/2007GL030812.

    • Search Google Scholar
    • Export Citation
  • Dukowicz, J., and R. Greatbatch, 1999: The bolus velocity in the stochastic theory of ocean turbulent tracer transport. J. Phys. Oceanogr., 29 , 22322239.

    • Search Google Scholar
    • Export Citation
  • Ekman, V. W., 1905: On the influence of the earth’s rotation on ocean currents. Arkiv. Mat. Astron. Fysik., 2 , 153.

  • Ferrari, R., and R. A. Plumb, 2003: Residual circulation in the ocean. Near-Boundary Processes and Their Parameterization: Proc. ‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 219–228.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., J. C. McWilliams, V. M. Canuto, and M. Dubovikov, 2008: Parameterization of eddy fluxes near oceanic boundaries. J. Climate, 21 , 27702789.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., and J. Marshall, 2006: Formulation and implementation of a “residual-mean” ocean circulation model. Ocean Modell., 13 , 86107.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., 2004: Wind-driven barotropic gyre II: Effects of eddies and low interior viscosity. J. Mar. Res., 62 , 195232.

  • Fox-Kemper, B., and J. Pedlosky, 2004: Wind-driven barotropic gyre I: Circulation control by eddy vorticity fluxes to an enhanced removal region. J. Mar. Res., 62 , 169193.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Godfrey, J., 1989: A Sverdrup model of the depth-integrated flow for the World Ocean allowing for island circulations. Geophys. Astrophys. Fluid Dyn., 45 , 89112.

    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96 , 157185.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and W. R. Holland, 1981: Regional eddy vorticity transport and the equilibrium vorticity budgets of a numerical model ocean circulation. J. Phys. Oceanogr., 11 , 190208.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44 , 828841.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1975: Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci., 32 , 14941497.

  • Holland, W. R., and P. B. Rhines, 1980: An example of eddy-induced ocean circulation. J. Phys. Oceanogr., 10 , 10101031.

  • Huang, R. X., 1987a: A three-layer model for the wind-driven circulation in a subtropical-subpolar basin. Part I: Model formulation and the subcritical state. J. Phys. Oceanogr., 17 , 664678.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1987b: A three-layer model for the wind-driven circulation in a subtropical-subpolar basin. Part II: The supercritical and hypercritical states. J. Phys. Oceanogr., 17 , 679697.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1988: A three-layer model for the wind-driven circulation in a subtropical-subpolar basin. Part III: Potential vorticity analysis. J. Phys. Oceanogr., 18 , 739752.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 1990: Matching a ventilated thermocline model with inertial western boundary currents. J. Phys. Oceanogr., 20 , 15991607.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and G. R. Flierl, 1987: Two-layer models for the thermocline and current structure in subtropical/subpolar gyres. J. Phys. Oceanogr., 17 , 872884.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic Circumpolar Current. Deep-Sea Res., 36A , 3953.

  • Killworth, P. D., 1997: On the parameterization of eddy transfer. Part I: Theory. J. Mar. Res., 55 , 11711197.

  • Lee, M., 2002: Lagrangian motion of particles and tracers on isopycnals. J. Phys. Oceanogr., 32 , 20862095.

  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13 , 292309.

  • Marshall, J. C., 1981: On the parameterization or geostrophic eddies in the ocean. J. Phys. Oceanogr., 11 , 257271.

  • Marshall, J. C., and G. Nurser, 1992: Fluid dynamics of oceanic thermocline ventilation. J. Phys. Oceanogr., 22 , 13151329.

  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31 , 12221246.

    • Search Google Scholar
    • Export Citation
  • Nadiga, B. T., 2008: Orientation of eddy fluxes in geostrophic turbulence. Philos. Trans. Roy. Soc. London, A366 , 24912510.

  • Nurser, A. J. G., and R. G. Williams, 1990: Cooling Parsons’ model of the separated Gulf Stream. J. Phys. Oceanogr., 20 , 19741979.

  • Parsons, A. T., 1969: A two-layer model of gulf stream separation. J. Fluid Mech., 39 , 511528.

  • Pedlosky, J., 1987: On Parsons’ model of the ventilated thermocline. J. Phys. Oceanogr., 17 , 15711582.

  • Plumb, R. A., 1990: A nonacceleration theorem for transient quasi-geostrophic eddies on a 3-dimensional time-mean flow. J. Atmos. Sci., 47 , 18251836.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35 , 165174.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and J. Marshall, 2004: The leaky thermocline. J. Phys. Oceanogr., 34 , 16481662.

  • Rhines, P. B., and W. R. Holland, 1979: A theoretical discussion of eddy-driven mean flows. Dyn. Atmos. Oceans, 3 , 289325.

  • Rhines, P. B., and W. R. Young, 1982a: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122 , 347367.

  • Rhines, P. B., and W. R. Young, 1982b: A theory of the wind-driven circulation. 1. Mid-ocean gyres. J. Mar. Res., 40 , (Suppl.). 559596.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35 , 16501666.

    • Search Google Scholar
    • Export Citation
  • Speich, S., H. A. Dijkstra, and M. Ghil, 1995: Successive bifurcations in a shallow-water model applied to the wind-driven ocean circulation. Nonlinear Processes Geophys., 2 , 241268.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28 , 727739.

  • Stommel, H. M., 1948: The westward intensification of wind-driven ocean currents. Trans. Amer. Geophys. Union, 29 , 202206.

  • Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33 , 318326.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and W. R. Young, 2006: Scaling baroclinic eddy fluxes: Vortices and energy balance. J. Phys. Oceanogr., 36 , 720738.

  • Treguier, A. M., I. M. Held, and V. D. Larichev, 1997: Parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Oceanogr., 27 , 567580.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

    • Search Google Scholar
    • Export Citation
  • Veronis, G., 1973: Model of world ocean circulation. Part I: Wind-driven, two-layer. J. Mar. Res., 31 , 228288.

  • Veronis, G., 1976: Model of world ocean circulation. Part II: Thermally-driven, two-layer. J. Mar. Res., 34 , 199216.

  • Veronis, G., 1978: Model of world ocean circulation. Part III: Thermally and wind driven. J. Mar. Res., 36 , 144.

  • Wardle, R., and J. Marshall, 2000: Representation of eddies in primitive equation models by a PV flux. J. Phys. Oceanogr., 30 , 24812503.

    • Search Google Scholar
    • Export Citation
  • Warren, B., J. LaCasce, and P. Robbins, 1996: On the obscurantist physics of “form drag” in theorizing about the circumpolar current. J. Phys. Oceanogr., 26 , 22972301.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1383 854 499
PDF Downloads 160 58 3