Early Spring Oceanic Heat Fluxes and Mixing Observed from Drift Stations North of Svalbard

Anders Sirevaag Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, and University Centre in Svalbard, Longyearbyen, Norway

Search for other papers by Anders Sirevaag in
Current site
Google Scholar
PubMed
Close
and
Ilker Fer Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Ilker Fer in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

From several drifting ice stations north of Svalbard, Norway, observations were made in early spring of the ocean turbulent characteristics in the upper 150 m using a microstructure profiler and close to the under-ice surface using eddy correlation instrumentation. The dataset is used to obtain average heat fluxes at the ice–water interface, in the mixed layer, across the main pycnocline, as well over different water masses in the region. The results are contrasted with proximity to the branches of the warm and saline Atlantic water current, the West Spitsbergen Current (WSC), which is the main oceanic heat and salinity source both to the region and to the Arctic Ocean. Hydrographic properties show that the surface water mass modification is typically due to atmospheric cooling with relatively less influence of ice melting. Surface heat fluxes of O(100) W m−2 are found within the branches of the WSC and over shelf areas with elevated levels of mixing due to strong tides. Away from the shelves and WSC, however, ocean-to-ice turbulent heat fluxes are typical of the central Arctic. Deeper in the water column, entrainment from below together with equally important horizontal advection and diffusion increase the heat content of the mixed layer and contribute to the heat flux maximum in the upper layers. The results in this study emphasize the importance of mixing along the boundaries, over shelves, and topography for the cooling of the Atlantic water layer in the Arctic in general, and for the regional heat budget, hence the ice cover and cooling of the WSC north of Svalbard, in particular.

Corresponding author address: Anders Sirevaag, Bjerknes Centre for Climate Research, Allegt. 70, 5007 Bergen, Norway. Email: anders.sirevaag@bjerknes.uib.no

Abstract

From several drifting ice stations north of Svalbard, Norway, observations were made in early spring of the ocean turbulent characteristics in the upper 150 m using a microstructure profiler and close to the under-ice surface using eddy correlation instrumentation. The dataset is used to obtain average heat fluxes at the ice–water interface, in the mixed layer, across the main pycnocline, as well over different water masses in the region. The results are contrasted with proximity to the branches of the warm and saline Atlantic water current, the West Spitsbergen Current (WSC), which is the main oceanic heat and salinity source both to the region and to the Arctic Ocean. Hydrographic properties show that the surface water mass modification is typically due to atmospheric cooling with relatively less influence of ice melting. Surface heat fluxes of O(100) W m−2 are found within the branches of the WSC and over shelf areas with elevated levels of mixing due to strong tides. Away from the shelves and WSC, however, ocean-to-ice turbulent heat fluxes are typical of the central Arctic. Deeper in the water column, entrainment from below together with equally important horizontal advection and diffusion increase the heat content of the mixed layer and contribute to the heat flux maximum in the upper layers. The results in this study emphasize the importance of mixing along the boundaries, over shelves, and topography for the cooling of the Atlantic water layer in the Arctic in general, and for the regional heat budget, hence the ice cover and cooling of the WSC north of Svalbard, in particular.

Corresponding author address: Anders Sirevaag, Bjerknes Centre for Climate Research, Allegt. 70, 5007 Bergen, Norway. Email: anders.sirevaag@bjerknes.uib.no

Save
  • Aagaard, K., J. H. Swift, and E. C. Carmack, 1985: Thermohaline circulation in the Arctic Mediterranean Seas. J. Geophys. Res., 90 , 48334846.

    • Search Google Scholar
    • Export Citation
  • Aagaard, K., A. Foldvik, and S. R. Hillman, 1987: The West Spitsbergen Current—Disposition and water mass transformation. J. Geophys. Res., 92 , 37783784.

    • Search Google Scholar
    • Export Citation
  • Arneborg, L., 2002: Mixing efficiencies in patchy turbulence. J. Phys. Oceanogr., 32 , 14961506.

  • Bourke, R. H., A. M. Weigel, and R. G. Paquette, 1988: The westward turning branch of the West Spitsbergen Current. J. Geophys. Res., 93 , 1406514077.

    • Search Google Scholar
    • Export Citation
  • Boyd, T. J., and E. A. D’Asaro, 1994: Cooling of the West Spitsbergen Current: Wintertime observations west of Svalbard. J. Geophys. Res., 99 , 2259722618.

    • Search Google Scholar
    • Export Citation
  • Cokelet, E. D., N. Tervalon, and J. G. Bellingham, 2008: Hydrography of the West Spitsbergen Current, Svalbard branch: Autumn 2001. J. Geophys. Res., 113 , C01006. doi:10.1029/2007JC004150.

    • Search Google Scholar
    • Export Citation
  • Dewey, R., R. Muench, and J. Gunn, 1999: Mixing and vertical heat flux estimates in the Arctic Eurasian Basin. J. Mar. Syst., 21 , 199205.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., and D. R. Caldwell, 1980: The Batchelor spectrum and dissipation in the upper ocean. J. Geophys. Res., 85 , 19101916.

  • Fer, I., 2006: Scaling turbulent dissipation in an Arctic fjord. Deep-Sea Res. II, 53 , 7795.

  • Fer, I., 2009: Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos. Oceanic Sci. Lett., 2 (3) 148152.

    • Search Google Scholar
    • Export Citation
  • Fer, I., and A. Sundfjord, 2007: Observations of upper ocean boundary layer dynamics in the marginal ice zone. J. Geophys. Res., 112 , C04012. doi:10.1029/2005JC003428.

    • Search Google Scholar
    • Export Citation
  • Fer, I., M. G. McPhee, and A. Sirevaag, 2004: Conditional statistics of the Reynolds stress in the under-ice boundary layer. Geophys. Res. Lett., 31 , L15311. doi:10.1029/2004GL020475.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1987: Diapycnal mixing in the thermocline—A review. J. Geophys. Res., 92 , 52495286.

  • IOC, IHO, and BODC, 2003: Centenary Edition of the GEBCO Digital Atlas. British Oceanographic Data Centre, CD-ROM.

  • Krishfield, R. A., and D. K. Perovich, 2005: Spatial and temporal variability of oceanic heat flux to the Arctic ice pack. J. Geophys. Res., 110 , C07021. doi:10.1029/2004JC002293.

    • Search Google Scholar
    • Export Citation
  • Lenn, Y. D., and Coauthors, 2009: Vertical mixing at intermediate depths in the Arctic boundary current. Geophys. Res. Lett., 36 , L05601. doi:10.1029/2008GL036792.

    • Search Google Scholar
    • Export Citation
  • Manley, T. O., 1995: Branching of Atlantic Water within the Greenland-Spitsbergen passage: An estimate of recirculation. J. Geophys. Res., 100 , 2062720634.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 1986: The upper ocean. Geophysics of Sea Ice, N. Untersteiner, Ed., Plenum, 339–394.

  • McPhee, M. G., 2002: Turbulent stress at the ice/ocean interface and bottom surface hydraulic roughness during the SHEBA drift. J. Geophys. Res., 107 , 8037. doi:10.1029/2000JC000633.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 2008: Air-Ice-Ocean Interaction: Turbulent Boundary Layer Exchange Processes. Springer, 215 pp.

  • McPhee, M. G., C. Kottmeier, and J. H. Morison, 1999: Ocean heat flux in the central Weddell Sea during winter. J. Phys. Oceanogr., 29 , 11661179.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., T. Kikuchi, J. H. Morison, and T. P. Stanton, 2003: Ocean-to-ice heat flux at the North Pole environmental observatory. Geophys. Res. Lett., 30 , 2274. doi:10.1029/2003GL018580.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 1996: Efficiency of mixing in the main thermocline. J. Geophys. Res., 101 , 1205712069.

  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10 , 8389.

  • Osborn, T. R., and C. S. Cox, 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3 , 321345.

  • Padman, L., and T. M. Dillon, 1991: Turbulent mixing near the Yermak Plateau during the coordinated Eastern Arctic Experiment. J. Geophys. Res., 96 , 47694782.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and S. Erofeeva, 2004: A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett., 31 , L02303. doi:10.1029/2003GL019003.

    • Search Google Scholar
    • Export Citation
  • Padman, L., A. J. Plueddemann, R. D. Muench, and R. Pinkel, 1992: Diurnal tides near the Yermak Plateau. J. Geophys. Res., 97 , 1263912652.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and P. Winsor, 2008: Mixing across the Arctic Ocean: Microstructure observations during the Beringia 2005 Expedition. Geophys. Res. Lett., 35 , L08606. doi:10.1029/2008GL033532.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., and Coauthors, 2000: Water mass distribution in Fram Strait and over the Yermak Plateau in summer 1997. Ann. Geophys., 18 , 687705.

    • Search Google Scholar
    • Export Citation
  • Saloranta, T. M., and P. M. Haugan, 2001: Interannual variability in the hydrography of Atlantic water northwest of Svalbard. J. Geophys. Res., 106 , 1393113943.

    • Search Google Scholar
    • Export Citation
  • Saloranta, T. M., and P. M. Haugan, 2004: Northward cooling and freshening of the warm core of the West Spitsbergen Current. Polar Res., 23 , 7988.

    • Search Google Scholar
    • Export Citation
  • Sirevaag, A., 2009: Turbulent exchange coefficients for the ice/ocean interface in case of rapid melting. Geophys. Res. Lett., 36 , L04606. doi:10.1029/2008GL036587.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, and D. R. Caldwell, 2001: The efficiency of mixing in turbulent patches: Inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31 , 19691992.

    • Search Google Scholar
    • Export Citation
  • Steele, M., and J. H. Morison, 1993: Hydrography and vertical fluxes of heat and salt northeast of Svalbard in autumn. J. Geophys. Res., 98 , 1001310024.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., and R. W. Schmitt, 1999: The contribution of salt fingers to vertical mixing in the North Atlantic Tracer Release Experiment. J. Phys. Oceanogr., 29 , 14041424.

    • Search Google Scholar
    • Export Citation
  • Sundfjord, A., I. Fer, Y. Kasajima, and H. Svendsen, 2007: Observations of turbulent mixing and hydrography in the marginal ice zone of the Barents Sea. J. Geophys. Res., 112 , C05008. doi:10.1029/2006JC003524.

    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and I. V. Fine, 2003: Estimating mixed layer depth from oceanic profile data. J. Atmos. Oceanic Technol., 20 , 319329.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc. London, A286 , 125181.

  • Timmermans, M-L., J. Toole, R. A. Krishfield, and P. Winsor, 2008: Ice-tethered profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J. Geophys. Res., 113 , C00A02. doi:10.1029/2008JC004829.

    • Search Google Scholar
    • Export Citation
  • Untersteiner, N., 1988: On the ice and heat-balance in Fram Strait. J. Geophys. Res., 93 , 527531.

  • Wettlaufer, J. S., N. Untersteiner, and R. Colony, 1990: Estimating oceanic heat flux from sea-ice thickness and temperature data. Ann. Glaciol., 14 , 315318.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. L., and M. Steele, 2007: Effect of vertical mixing on the Atlantic Water layer circulation in the Arctic Ocean. J. Geophys. Res., 112 , C04S04. doi:10.1029/2006JC003732.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 600 342 96
PDF Downloads 263 94 5