Abstract
Near-surface, two-dimensional (2D) baroclinic frontogenesis induced by a barotropic deformation flow enhances the growth of three-dimensional (3D) fluctuations that occur on an ever smaller scale as the front progressively sharpens. The 3D fluctuation growth rate further increases with a larger deformation rate. The fluctuations grow by a combination of baroclinic and barotropic energy conversions from the 2D frontal flow, with the former dominating for most of the situations examined, ranging from small to
Corresponding author address: James C. McWilliams, IGPP, UCLA, Los Angeles, CA 90095-1567. Email: jcm@atmos.ucla.edu