Lagrangian Drifter Dispersion in the Surf Zone: Directionally Spread, Normally Incident Waves

Matthew Spydell Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Matthew Spydell in
Current site
Google Scholar
PubMed
Close
and
Falk Feddersen Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Falk Feddersen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lagrangian drifter statistics in a surf zone wave and circulation model are examined and compared to single- and two-particle dispersion statistics observed on an alongshore uniform natural beach with small, normally incident, directionally spread waves. Drifter trajectories are modeled with a time-dependent Boussinesq wave model that resolves individual waves and parameterizes wave breaking. The model reproduces the cross-shore variation in wave statistics observed at three cross-shore locations. In addition, observed and modeled Eulerian binned (means and standard deviations) drifter velocities agree. Modeled surf zone Lagrangian statistics are similar to those observed. The single-particle (absolute) dispersion statistics are well predicted, including nondimensionalized displacement probability density functions (PDFs) and the growth of displacement variance with time. The modeled relative dispersion and scale-dependent diffusivity is consistent with the observed and indicates the presence of a 2D turbulent flow field. The model dispersion is due to the rotational components of the modeled velocity field, indicating the importance of vorticity in driving surf zone dispersion. Modeled irrotational velocities have little dispersive capacity. Surf zone vorticity is generated by finite crest-length wave breaking that results, on the alongshore uniform bathymetry, from a directionally spread wave field. The generated vorticity then cascades to other length scales as in 2D turbulence. Increasing the wave directional spread results in increased surf zone vorticity variability and surf zone dispersion. Eulerian and Lagrangian analysis of the flow indicate that the surf zone is 2D turbulent-like with an enstrophy cascade for length scales between approximately 5 and 10 m and an inverse-energy cascade for scales of 20 to 100 m. The vorticity injection length scale (the transition between enstrophy and inverse-energy cascade) is a function of the wave directional spread.

Corresponding author address: M. Spydell, SIO, 9500 Gilman Dr., La Jolla, CA 92093–0209. Email: mspydell@ucsd.edu

Abstract

Lagrangian drifter statistics in a surf zone wave and circulation model are examined and compared to single- and two-particle dispersion statistics observed on an alongshore uniform natural beach with small, normally incident, directionally spread waves. Drifter trajectories are modeled with a time-dependent Boussinesq wave model that resolves individual waves and parameterizes wave breaking. The model reproduces the cross-shore variation in wave statistics observed at three cross-shore locations. In addition, observed and modeled Eulerian binned (means and standard deviations) drifter velocities agree. Modeled surf zone Lagrangian statistics are similar to those observed. The single-particle (absolute) dispersion statistics are well predicted, including nondimensionalized displacement probability density functions (PDFs) and the growth of displacement variance with time. The modeled relative dispersion and scale-dependent diffusivity is consistent with the observed and indicates the presence of a 2D turbulent flow field. The model dispersion is due to the rotational components of the modeled velocity field, indicating the importance of vorticity in driving surf zone dispersion. Modeled irrotational velocities have little dispersive capacity. Surf zone vorticity is generated by finite crest-length wave breaking that results, on the alongshore uniform bathymetry, from a directionally spread wave field. The generated vorticity then cascades to other length scales as in 2D turbulence. Increasing the wave directional spread results in increased surf zone vorticity variability and surf zone dispersion. Eulerian and Lagrangian analysis of the flow indicate that the surf zone is 2D turbulent-like with an enstrophy cascade for length scales between approximately 5 and 10 m and an inverse-energy cascade for scales of 20 to 100 m. The vorticity injection length scale (the transition between enstrophy and inverse-energy cascade) is a function of the wave directional spread.

Corresponding author address: M. Spydell, SIO, 9500 Gilman Dr., La Jolla, CA 92093–0209. Email: mspydell@ucsd.edu

Save
  • Allen, J., P. A. Newberger, and R. A. Holman, 1996: Nonlinear shear instabilities of alongshore currents on plane beaches. J. Fluid Mech., 310 , 181213.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1950: The application of the similarity theory of turbulence to atmospheric diffusion. Quart. J. Roy. Meteor. Soc., 76 , 133146.

    • Search Google Scholar
    • Export Citation
  • Boehm, A. B., S. B. Grant, J. H. Kim, C. D. McGee, S. Mowbray, C. Clark, D. Foley, and D. Wellmann, 2002: Decadal and shorter period variability of surf zone water quality at Huntington Beach, California. Environ. Sci. Technol., 36 , 38853892.

    • Search Google Scholar
    • Export Citation
  • Boffetta, G., and I. M. Sokolov, 2002a: Relative dispersion in fully developed turbulence: The Richarson’s law and intermittency corrections. Phys. Rev. Lett., 88 , 094501. doi:10.1103/PhysRevLett.88.094501.

    • Search Google Scholar
    • Export Citation
  • Boffetta, G., and I. M. Sokolov, 2002b: Statistics of two-particle dispersion in two-dimensional turbulence. Phys. Fluids, 14 , 32243282.

    • Search Google Scholar
    • Export Citation
  • Bowen, A. J., and R. A. Holman, 1989: Shear instabilities of the mean longshore current. 1. Theory. J. Geophys. Res., 94 , 1802318030.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., 2000: On the vorticity transport due to dissipating or breaking waves in shallow-water flow. J. Fluid Mech., 407 , 235263.

    • Search Google Scholar
    • Export Citation
  • Chen, Q., R. A. Dalrymple, J. T. Kirby, A. B. Kennedy, and M. C. Haller, 1999: Boussinesq modeling of a rip current system. J. Geophys. Res., 104 , 2061720637.

    • Search Google Scholar
    • Export Citation
  • Chen, Q., J. T. Kirby, R. A. Dalrymple, A. B. Kennedy, and A. Chawla, 2000: Boussinesq modeling of wave transformation, breaking, and runup. II: 2D. J. Waterway Port Coastal Ocean Eng., 126 , 4856.

    • Search Google Scholar
    • Export Citation
  • Chen, Q., J. T. Kirby, R. A. Dalrymple, F. Shi, and E. B. Thornton, 2003: Boussinesq modeling of longshore currents. J. Geophys. Res., 108 , 3362. doi:10.1029/2002JC001308.

    • Search Google Scholar
    • Export Citation
  • Clarke, L., D. Ackerman, and J. Largier, 2007: Dye dispersion in the surf zone: Measurements and simple models. Cont. Shelf Res., 27 , 650669.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1987: Modeling eddy transport of passive tracers. J. Mar. Res., 45 , 635665.

  • Davis, R. E., 1991: Observing the general circulation with floats. Deep-Sea Res., 38 , S531S571.

  • Denny, M. W., and M. F. Shibata, 1989: Consequences of surf-zone turbulence for settlement and external fertilization. Amer. Naturalist, 134 , 859889.

    • Search Google Scholar
    • Export Citation
  • Doutt, J. D., G. V. Frisk, and H. Martell, 1998: Using GPS at sea to determine the range between a moving ship and a drifting buoy to centimeter-level accuracy. Proc. OCEANS ′98, Nice, France, IEEE, 1344–1347.

  • Durran, D. R., 1991: The third-order Adams–Bashforth method—An attractive alternative to leapfrog time differencing. Mon. Wea. Rev., 119 , 702720.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., 2007: Breaking wave induced cross-shore tracer dispersion in the surf zone: Model results and scalings. J. Geophys. Res., 112 , C09012. doi:10.1029/2006JC004006.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., and R. T. Guza, 2003: Observations of nearshore circulation: Alongshore uniformity. J. Geophys. Res., 108 , 3006. doi:10.1029/2001JC001293.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., R. T. Guza, S. Elgar, and T. H. C. Herbers, 1998: Alongshore momentum balances in the nearshore. J. Geophys. Res., 103 , 1566715676.

    • Search Google Scholar
    • Export Citation
  • George, R., and J. L. Largier, 1996: Description and performance of finescale drifters for coastal and estuarine studies. J. Atmos. Oceanic Technol., 13 , 13221326.

    • Search Google Scholar
    • Export Citation
  • Gobbi, M. F., J. T. Kirby, and G. Wei, 2000: A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to O(kh)4. J. Fluid Mech., 405 , 181210.

    • Search Google Scholar
    • Export Citation
  • Grant, S., J. Kim, B. Jones, S. Jenkins, and J. Wasyl, 2005: Surf zone entrainment, along-shore transport, and human health implications of pollution from tidal outlets. J. Geophys. Res., 110 , C10025. doi:10.1029/2004JC002401.

    • Search Google Scholar
    • Export Citation
  • Haile, R. W., and Coauthors, 1999: The health effects of swimming in ocean water contaminated by storm drain runoff. Epidemiology, 10 , 355363.

    • Search Google Scholar
    • Export Citation
  • Harlow, F., and J. Welch, 1965: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surfaces. Phys. Fluids, 8 , 21812189.

    • Search Google Scholar
    • Export Citation
  • Harris, T., J. Jordaan, W. McMurray, C. Verwey, and F. Anderson, 1963: Mixing in the surf zone. Int. J. Air Water Pollut., 7 , 649667.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. M., R. T. Guza, S. Elgar, and T. H. C. Herbers, 2006: Refraction of surface gravity waves by shear waves. J. Phys. Oceanogr., 36 , 629635.

    • Search Google Scholar
    • Export Citation
  • Herbers, T. H. C., S. Elgar, and R. T. Guza, 1999: Directional spreading of waves in the nearshore. J. Geophys. Res., 104 , 76837693.

  • Inman, D., R. Tait, and C. Nordstrom, 1971: Mixing in the surfzone. J. Geophys. Res., 26 , 34933514.

  • Jiang, S. C., and W. Chu, 2004: PCR detection of pathogenic viruses in Southern California urban rivers. J. Appl. Microbiol., 97 , 1728.

    • Search Google Scholar
    • Export Citation
  • Johnson, D., and C. Pattiaratchi, 2004: Transient rip currents and nearshore circulation on a swell-dominated beach. J. Geophys. Res., 109 , C02026. doi:10.1029/2003JC001798.

    • Search Google Scholar
    • Export Citation
  • Johnson, D., and C. Pattiaratchi, 2006: Boussinesq modelling of transient rip currents. Coast. Eng., 53 , 419439.

  • Jullien, M-C., 2003: Dispersion of passive tracers in the direct enstrophy cascade: Experimental results. Phys. Fluids, 15 , 22282237.

    • Search Google Scholar
    • Export Citation
  • Jullien, M-C., J. Paret, and P. Tabeling, 1999: Richardson pair dispersion in two-dimensional turbulence. Phys. Rev. Lett., 82 , 28722875.

    • Search Google Scholar
    • Export Citation
  • Kellay, H., and W. I. Goldburg, 2002: Two-dimensional turbulence: A review of some recent experiments. Rep. Prog. Phys., 65 , 845893.

  • Kennedy, A. B., 2005: Fluctuating circulation forced by unsteady multidirectional breaking waves. J. Fluid Mech., 538 , 189198.

  • Kennedy, A. B., Q. Chen, J. T. Kirby, and R. A. Dalrymple, 2000: Boussinesq modeling of wave transformation, breaking, and runup. I: 1D. J. Waterway Port Coastal Ocean Eng., 126 , 3947.

    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1966: Dispersion of particle pairs in homogeneous turbulence. Phys. Fluids, 9 , 19371943.

  • Kuik, A. J., G. P. van Vledder, and L. H. Holthuijsen, 1988: A method for the routine analysis of pitch-and-roll buoy wave data. J. Phys. Oceanogr., 18 , 10201034.

    • Search Google Scholar
    • Export Citation
  • Lewin, J., 1979: Blooms of surf-zone diatoms along the coast of the Olympic Peninsula, Washington. X. Chemical composition of the surf diatom Chaetoceros armatum and its major herbivore, the Pacific razor clam Siliqua patula. Mar. Biol., 51 , 259265.

    • Search Google Scholar
    • Export Citation
  • Lin, J-T., 1972: Relative dispersion in the enstrophy-cascading inertial range of homogeneous two-dimensional turbulence. J. Atmos. Sci., 29 , 394396.

    • Search Google Scholar
    • Export Citation
  • MacMahan, J. H., A. J. H. M. Reniers, E. B. Thornton, and T. P. Stanton, 2004: Surf zone eddies coupled with rip current morphology. J. Geophys. Res., 109 , C07004. doi:10.1029/2003JC002083.

    • Search Google Scholar
    • Export Citation
  • Nwogu, O., 1993: Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterway Port Coastal Ocean Eng., 119 , 618638.

    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1941a: Spectral energy distribution in a turbulent flow. Dokl. Akad. Nauk SSSR, 32 , 2224.

  • Obukhov, A. M., 1941b: Spectral energy distribution in a turbulent flow. Izv. Akad. Nauk SSSR, 5 , 453466.

  • Okubo, A., 1971: Oceanic diffusion diagrams. Deep-Sea Res., 18 , 789802.

  • Oltman-Shay, J., P. A. Howd, and W. A. Birkemeier, 1989: Shear instabilities of the mean longshore current. 2. Field observations. J. Geophys. Res., 94 , 1803118042.

    • Search Google Scholar
    • Export Citation
  • Peregrine, D., 1998: Surf zone currents. Theor. Comput. Fluid Dyn., 10 , 295309.

  • Raubenheimer, B., R. T. Guza, and S. Elgar, 1996: Wave transformation across the inner surf zone. J. Geophys. Res., 101 , 2558925597.

  • Reeves, R. L., S. B. Grant, R. D. Mrse, C. M. C. Oancea, B. F. Sanders, and A. B. Boehm, 2004: Scaling and management of fecal indicator bacteria in runoff from a coastal urban watershed in Southern California. Environ. Sci. Technol., 38 , 26372648.

    • Search Google Scholar
    • Export Citation
  • Reniers, A. J. H. M., J. H. MacMahan, E. B. Thornton, and T. P. Stanton, 2007: Modeling of very low frequency motions during RIPEX. J. Geophys. Res., 112 , C07013. doi:10.1029/2005JC003122.

    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1926: Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. London, 110A , 709737.

  • Romer, G., and A. McLachlan, 1986: Mullet grazing on surf diatom accumulations. J. Fish Biol., 28 , 93104.

  • Ruessink, B. G., J. R. Miles, F. Feddersen, R. T. Guza, and S. Elgar, 2001: Modeling the alongshore current on barred beaches. J. Geophys. Res., 106 , 2245122463.

    • Search Google Scholar
    • Export Citation
  • Schiff, K. C., M. J. Allen, E. Y. Zeng, and S. M. Bay, 2000: Southern California. Mar. Pollut. Bull., 41 , 7693.

  • Schmidt, W. E., B. T. Woodward, K. S. Millikan, R. T. Guza, B. Raubenheimer, and S. Elgar, 2003: A GPS-tracked surf zone drifter. J. Atmos. Oceanic Technol., 20 , 10691075.

    • Search Google Scholar
    • Export Citation
  • Spydell, M., F. Feddersen, R. T. Guza, and W. E. Schmidt, 2007: Observing surf-zone dispersion with drifters. J. Phys. Oceanogr., 37 , 29202939.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1949: Horizontal diffusion due to oceanic turbulence. J. Mar. Res., 8 , 199225.

  • Talbot, M., and G. Bate, 1987: Rip current characteristics and their role in the exchange of water and surf diatoms between the surf zone and nearshore. Estuarine Coastal Shelf Sci., 25 , 707727.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1921: Diffusion by continuous movements. Proc. London Math. Soc., 20 , 196212.

  • Wei, G., J. T. Kirby, S. T. Grilli, and R. Subramanya, 1995: A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear unsteady waves. J. Fluid Mech., 294 , 7192.

    • Search Google Scholar
    • Export Citation
  • Wei, G., J. T. Kirby, and A. Sinha, 1999: Generation of waves in Boussinesq models using a source function method. Coastal Eng., 36 , 271299.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 310 97 2
PDF Downloads 211 76 4