Generation Mechanism of Spiciness Anomalies: An OGCM Analysis in the North Atlantic Subtropical Gyre

Audine Laurian Laboratoire d’Océanographie et du Climat: Expérimentation et Approche Numérique, Institut Pierre Simon Laplace, Unité Mixte de Recherche, CNRS-UPMC-IRD, Paris, France

Search for other papers by Audine Laurian in
Current site
Google Scholar
PubMed
Close
,
Alban Lazar Laboratoire d’Océanographie et du Climat: Expérimentation et Approche Numérique, Institut Pierre Simon Laplace, Unité Mixte de Recherche, CNRS-UPMC-IRD, Paris, France

Search for other papers by Alban Lazar in
Current site
Google Scholar
PubMed
Close
, and
Gilles Reverdin Laboratoire d’Océanographie et du Climat: Expérimentation et Approche Numérique, Institut Pierre Simon Laplace, Unité Mixte de Recherche, CNRS-UPMC-IRD, Paris, France

Search for other papers by Gilles Reverdin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Oceanic teleconnections between the low and midlatitudes are a key mechanism to understanding the climate variability. Spiciness anomalies (density-compensated anomalies) have been shown to transport temperature and salinity signals when propagating along current streamlines in the subtropical gyres of the Atlantic and Pacific Oceans. The generation mechanism of spiciness anomalies in the North Atlantic subtropical gyre is investigated using an analytical model based on the late-winter subduction of salinity and temperature anomalies along isopycnal surfaces. The keystone of this approach is the change of the coordinates frame from isobaric to isopycnic surfaces, suited for subduction problems. The isopycnal nature of spiciness anomalies and the use of a linear density equation allows for the analytical model to depend only upon surface temperature and salinity anomalies, the mean thermocline currents, and the surface density ratio. This model clarifies and above all quantifies the mechanism by which surface temperature and salinity anomalies are modulated by density ratios to produce fully different isopycnal temperature and salinity anomalies.

A global run from the ocean GCM (OGCM) Océan Parallélisé (OPA) over the period 1948–2002 provides the reference data in which the North Atlantic subtropical thermocline spiciness variability is analyzed. Two EOF modes are sufficient to explain half of the low-frequency variability in the OGCM: one is maximum over the northeastern subtropics, and the other is in the central basin. The analytical model reproduces well the spatial pattern, amplitude, and sign of these two main modes. It confirms that the two centers of action of the anomalies are conditioned by the surface density ratio, the first corresponding to null salinity gradients and the second to near-density-compensated temperature gradients. Considering that the analytical model has good skills at reproducing the decadal variability of the OGCM spiciness anomalies in the permanent thermocline, it is believed that this is an interesting tool to understand and forecast the ventilation of the North Atlantic subtropical gyre at this time scale.

Corresponding author address: Audine Laurian, Laboratoire d’Océanographie et du Climat: Expérimentation et Approche Numérique (LOCEAN), Université Pierre et Marie Curie, 4 Place Jussieu, Tour 45-55 4ème étage, Case 100, Paris, CEDEX 75252, France. Email: audine.laurian@locean-ipsl.upmc.fr

Abstract

Oceanic teleconnections between the low and midlatitudes are a key mechanism to understanding the climate variability. Spiciness anomalies (density-compensated anomalies) have been shown to transport temperature and salinity signals when propagating along current streamlines in the subtropical gyres of the Atlantic and Pacific Oceans. The generation mechanism of spiciness anomalies in the North Atlantic subtropical gyre is investigated using an analytical model based on the late-winter subduction of salinity and temperature anomalies along isopycnal surfaces. The keystone of this approach is the change of the coordinates frame from isobaric to isopycnic surfaces, suited for subduction problems. The isopycnal nature of spiciness anomalies and the use of a linear density equation allows for the analytical model to depend only upon surface temperature and salinity anomalies, the mean thermocline currents, and the surface density ratio. This model clarifies and above all quantifies the mechanism by which surface temperature and salinity anomalies are modulated by density ratios to produce fully different isopycnal temperature and salinity anomalies.

A global run from the ocean GCM (OGCM) Océan Parallélisé (OPA) over the period 1948–2002 provides the reference data in which the North Atlantic subtropical thermocline spiciness variability is analyzed. Two EOF modes are sufficient to explain half of the low-frequency variability in the OGCM: one is maximum over the northeastern subtropics, and the other is in the central basin. The analytical model reproduces well the spatial pattern, amplitude, and sign of these two main modes. It confirms that the two centers of action of the anomalies are conditioned by the surface density ratio, the first corresponding to null salinity gradients and the second to near-density-compensated temperature gradients. Considering that the analytical model has good skills at reproducing the decadal variability of the OGCM spiciness anomalies in the permanent thermocline, it is believed that this is an interesting tool to understand and forecast the ventilation of the North Atlantic subtropical gyre at this time scale.

Corresponding author address: Audine Laurian, Laboratoire d’Océanographie et du Climat: Expérimentation et Approche Numérique (LOCEAN), Université Pierre et Marie Curie, 4 Place Jussieu, Tour 45-55 4ème étage, Case 100, Paris, CEDEX 75252, France. Email: audine.laurian@locean-ipsl.upmc.fr

Save
  • Bindoff, N. L., and T. J. McDougall, 1994: Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr., 24 , 11371152.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed layer physics. J. Phys. Oceanogr., 23 , 13631388.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., M. Arhan, A. Lazar, and G. Prévost, 2002: A Lagrangian numerical investigation of the origins and fates of the salinity maximum water in the Atlantic. J. Geophys. Res., 107 , 3163. doi:10.1029/2002JC001318.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., S. Levitus, J. Antonov, M. Conkright, T. O’Brien, and C. Stephens, 1998: Salinity of the Pacific Ocean. Vol. 5, World Ocean Atlas 1998, NOAA Atlas NESDIS 31, 166 pp.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., J. S. Godfrey, D. R. Jackett, and T. J. McDougall, 1991: A model of sea level rise caused by ocean thermal expansion. J. Climate, 4 , 438456.

    • Search Google Scholar
    • Export Citation
  • Curry, R., B. Dickson, and I. Yashayaev, 2003: A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature, 426 , 826829.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., S. A. Grodsky, J. A. Carton, and M. J. McPhaden, 2004: Seasonal salt budget of the northwestern tropical Atlantic Ocean along 38°W. J. Geophys. Res., 109 , C03052. doi:10.1029/2003JC002111.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150156.

  • Jackett, D. R., and T. J. McDougall, 1985: An oceanographic variable for the characterization of intrusions and water masses. Deep-Sea Res., 32 , 11951207.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., 2006: Generation and initial evolution of a mode water θS anomaly. J. Phys. Oceanogr., 36 , 739751.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kessler, W. S., 1999: Interannual variability in the subsurface high salinity tongue south of the equator at 165°E. J. Phys. Oceanogr., 29 , 20382049.

    • Search Google Scholar
    • Export Citation
  • Latif, M., E. Roeckner, U. Mikolajewicz, and R. Voss, 2000: Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J. Climate, 13 , 18091813.

    • Search Google Scholar
    • Export Citation
  • Laurian, A., A. Lazar, G. Reverdin, K. Rodgers, and P. Terray, 2006: Poleward propagation of spiciness anomalies in the North Atlantic Ocean. Geophys. Res. Lett., 33 , L13603. doi:10.1029/2006GL026155.

    • Search Google Scholar
    • Export Citation
  • Lazar, A., R. Murtugudde, and A. J. Busalacchi, 2001: A model study of temperature anomaly propagation from the subtropics to tropics within the South Atlantic thermocline. Geophys. Res. Lett., 28 , 12711274.

    • Search Google Scholar
    • Export Citation
  • Lazar, A., T. Inui, P. Malanotte-Rizzoli, A. J. Busalacchi, L. Wang, and R. Murtugudde, 2002: Seasonality of the ventilation of the tropical Atlantic thermocline in an ocean general circulation model. J. Geophys. Res., 107 , 3104. doi:10.1029/2000JC000667.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., L. M. Rothstein, R-H. Zhang, and A. J. Busalacchi, 2005: On the connection between South Pacific subtropical spiciness anomalies and decadal equatorial variability in an ocean general circulation model. J. Geophys. Res., 110 , C10002. doi:10.1029/2004JC002655.

    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13 , 292309.

  • Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1998: OPA 8.1 ocean general circulation model reference manual. Institut Pierre Simon Laplace Note 11, 91 pp.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., A. J. Nurser, and R. G. Williams, 1993: Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr., 23 , 13151329.

    • Search Google Scholar
    • Export Citation
  • Mignot, J., and C. Frankignoul, 2003: On the interannual variability of surface salinity in the Atlantic. Climate Dyn., 20 , 555565. doi:10.1007/s00382-002-0294-0.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., and S. P. Xie, 2000: Propagation of North Pacific interdecadal subsurface temperature anomalies in an ocean GCM. Geophys. Res. Lett., 27 , 37473750.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., and H. Sasaki, 2007: Formation mechanism for isopycnal temperature–salinity anomalies propagating from the eastern South Pacific to the equatorial region. J. Climate, 20 , 13051315.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., E. Kestenare, C. Frankignoul, and T. Delcroix, 2007: Surface salinity in the Atlantic Ocean (30°S–50°N). Prog. Oceanogr., 73 , 311340. doi:10.1016/j.pocean.2006.11.004.

    • Search Google Scholar
    • Export Citation
  • Rudnick, L. R., and R. Ferrari, 1999: Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science, 283 , 526529.

    • Search Google Scholar
    • Export Citation
  • Rudnick, L. R., and J. P. Martin, 2002: On the horizontal density ratio in the upper ocean. Dyn. Atmos. Oceans, 36 , 321.

  • Schneider, N., 2000: A decadal spiciness mode in the tropics. Geophys. Res. Lett., 27 , 257260.

  • Stommel, H., 1979: Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc. Natl. Acad. Sci. USA, 76 , 30513055.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., A. Lazar, and C. J. C. Reason, 2005: Physics and dynamics of density-compensated temperature and salinity anomalies. Part I: Theory. J. Phys. Oceanogr., 35 , 849864.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., and W. G. Large, 2004: Late-winter generation of spiciness on subducted isopycnals. J. Phys. Oceanogr., 34 , 15281547.

  • Yeager, S. G., and W. G. Large, 2007: Observational evidence of winter spice injection. J. Phys. Oceanogr., 37 , 28952919.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 374 167 85
PDF Downloads 175 49 13