Wave-Driven Circulation of a Coastal Reef–Lagoon System

Ryan J. Lowe School of Environmental Systems Engineering, University of Western Australia, Crawley, Western Australia, Australia, and Environmental Fluid Mechanics Laboratory, Stanford University, Stanford, California

Search for other papers by Ryan J. Lowe in
Current site
Google Scholar
PubMed
Close
,
James L. Falter Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii

Search for other papers by James L. Falter in
Current site
Google Scholar
PubMed
Close
,
Stephen G. Monismith Environmental Fluid Mechanics Laboratory, Stanford University, Stanford, California

Search for other papers by Stephen G. Monismith in
Current site
Google Scholar
PubMed
Close
, and
Marlin J. Atkinson Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii

Search for other papers by Marlin J. Atkinson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The response of the circulation of a coral reef system in Kaneohe Bay, Hawaii, to incident wave forcing was investigated using field data collected during a 10-month experiment. Results from the study revealed that wave forcing was the dominant mechanism driving the circulation over much of Kaneohe Bay. As predicted theoretically, wave setup generated near the reef crest resulting from wave breaking established a pressure gradient that drove flow over the reef and out of the two reef channels. Maximum reef setup was found to be roughly proportional to the offshore wave energy flux above a threshold root-mean-square wave height of 0.7 m (at which height setup was negligible). On the reef flat, the wave-driven currents increased approximately linearly with incident wave height; however, the magnitude of these currents was relatively weak (typically <20 cm s−1) because of (i) the mild fore-reef slope of Kaneohe Bay that reduced setup resulting from a combination of frictional wave damping and its relatively wide surf zone compared to steep-faced reefs, and (ii) the presence of significant wave setup inside its coastally bounded lagoon, resulting from frictional resistance on the lagoon–channel return flows, which reduced cross-reef setup gradients by 60%–80%. In general, the dynamics of these wave-driven currents roughly matched predictions derived from quasi-one-dimensional mass and momentum balances that incorporated radiation stresses, setup gradients, bottom friction, and the morphological properties of the reef–lagoon system.

Corresponding author address: Ryan J. Lowe, School of Earth and Environment, University of Western Australia, M004, 35 Stirling Hwy., Crawley, WA 6009, Australia. Email: ryan.lowe@uwa.edu.au

Abstract

The response of the circulation of a coral reef system in Kaneohe Bay, Hawaii, to incident wave forcing was investigated using field data collected during a 10-month experiment. Results from the study revealed that wave forcing was the dominant mechanism driving the circulation over much of Kaneohe Bay. As predicted theoretically, wave setup generated near the reef crest resulting from wave breaking established a pressure gradient that drove flow over the reef and out of the two reef channels. Maximum reef setup was found to be roughly proportional to the offshore wave energy flux above a threshold root-mean-square wave height of 0.7 m (at which height setup was negligible). On the reef flat, the wave-driven currents increased approximately linearly with incident wave height; however, the magnitude of these currents was relatively weak (typically <20 cm s−1) because of (i) the mild fore-reef slope of Kaneohe Bay that reduced setup resulting from a combination of frictional wave damping and its relatively wide surf zone compared to steep-faced reefs, and (ii) the presence of significant wave setup inside its coastally bounded lagoon, resulting from frictional resistance on the lagoon–channel return flows, which reduced cross-reef setup gradients by 60%–80%. In general, the dynamics of these wave-driven currents roughly matched predictions derived from quasi-one-dimensional mass and momentum balances that incorporated radiation stresses, setup gradients, bottom friction, and the morphological properties of the reef–lagoon system.

Corresponding author address: Ryan J. Lowe, School of Earth and Environment, University of Western Australia, M004, 35 Stirling Hwy., Crawley, WA 6009, Australia. Email: ryan.lowe@uwa.edu.au

Save
  • Apotsos, A., B. Raubenheimer, S. Elgar, R. T. Guza, and J. A. Smith, 2007: Effects of wave rollers and bottom stress on wave setup. J. Geophys. Res., 112 , C02003. doi:10.1029/2006JC003549.

    • Search Google Scholar
    • Export Citation
  • Apotsos, A., B. Raubenheimer, S. Elgar, and R. T. Guza, 2008a: Testing and calibrating parametric wave transformation models on natural beaches. Coastal Eng., 55 , 224235.

    • Search Google Scholar
    • Export Citation
  • Apotsos, A., B. Raubenheimer, S. Elgar, and R. T. Guza, 2008b: Wave-driven setup and alongshore flows observed onshore of a submarine canyon. J. Geophys. Res., 113 , C07025. doi:10.1029/2007JC004514.

    • Search Google Scholar
    • Export Citation
  • Baldock, T. E., P. Holmes, S. Bunker, and P. Van Weert, 1998: Cross-shore hydrodynamics within an unsaturated surf zone. Coastal Eng., 34 , 173196.

    • Search Google Scholar
    • Export Citation
  • Bathen, K. H., 1968: A descriptive study of the physical oceanography of Kaneohe Bay, Oahu, Hawaii. Hawaii Institute of Marine Biology Tech. Rep. 14, 353 pp.

    • Search Google Scholar
    • Export Citation
  • Beardsley, R. C., R. Limeburner, and L. K. Rosenfeld, 1985: Introduction to the CODE-2 moored array and large-scale data report. CODE Tech. Rep. 38 and WHOI Tech. Rep. 85-35, 234 pp.

    • Search Google Scholar
    • Export Citation
  • Bellotti, G., 2004: A simplified model of rip currents systems around discontinuous submerged barriers. Coastal Eng., 51 , 323335.

  • Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions - 1. Model description and validation. J. Geophy. Res., 104 , (C4). 76497666.

    • Search Google Scholar
    • Export Citation
  • Bowen, A. J., D. L. Inman, and V. P. Simmons, 1968: Wave ‘setdown’ and wave setup. J. Geophys. Res., 73 , 25692577.

  • Callaghan, D. P., P. Nielsen, N. Cartwright, M. R. Gourlay, and T. E. Baldock, 2006: Atoll lagoon flushing forced by waves. Coastal Eng., 53 , 691704.

    • Search Google Scholar
    • Export Citation
  • Dalrymple, R. A., 1978: Rip currents and their causes. Proc. 16th Int. Conf. Coastal Engineering, Hamburg, Germany, ASCE, 1414–1427.

  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6 , 249266.

    • Search Google Scholar
    • Export Citation
  • Dean, R. G., and R. A. Dalrymple, 1991: Water Wave Mechanics for Engineers and Scientists. World Scientific, 353 pp.

  • Dean, R. G., and C. J. Bender, 2006: Static wave setup with emphasis on damping effects by vegetation and bottom friction. Coastal Eng., 53 , 149156.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and R. E. Thompson, 2001: Data Analysis Methods in Physical Oceanography. Elsevier, 638 pp.

  • Falter, J. L., M. J. Atkinson, and M. A. Merrifield, 2004: Mass transfer limitation of nutrient uptake by a wave-dominated reef flat community. Limnol. Oceanogr., 49 , 18201831.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., E. L. Gallagher, R. T. Guza, and S. Elgar, 2003: The drag coefficient, bottom roughness, and wave-breaking in the nearshore. Coastal Eng., 48 , 189195.

    • Search Google Scholar
    • Export Citation
  • Gourlay, M. R., 1996: Wave set-up on coral reefs. 2. Set-up on reefs with various profiles. Coastal Eng., 28 , 1755.

  • Gourlay, M. R., and G. Colleter, 2005: Wave-generated flow on coral reefs: An analysis for two-dimensional horizontal reef-tops with steep faces. Coastal Eng., 52 , 353387.

    • Search Google Scholar
    • Export Citation
  • Haller, M. C., R. A. Dalrymple, and I. A. Svendsen, 2002: Experimental study of nearshore dynamics on a barred beach with rip channels. J. Geophys. Res., 107 , 3061. doi:10.1029/2001JC000955.

    • Search Google Scholar
    • Export Citation
  • Hardy, T. A., and I. R. Young, 1996: Field study of wave attenuation on an offshore coral reef. J. Geophys. Res., 101 , (C6). 1431114326.

    • Search Google Scholar
    • Export Citation
  • Hearn, C. J., 1999: Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level. J. Geophys. Res., 104 , (C12). 3000730019.

    • Search Google Scholar
    • Export Citation
  • Hench, J. L., J. J. Leichter, and S. G. Monismith, 2008: Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol. Oceanogr., 53 , 26812694.

    • Search Google Scholar
    • Export Citation
  • Jago, O. K., P. S. Kench, and R. W. Brander, 2007: Field observations of wave-driven water-level gradients across a coral reef flat. J. Geophys. Res., 112 , C06027. doi:10.1029/2006JC003740.

    • Search Google Scholar
    • Export Citation
  • Jones, N. L., and S. G. Monismith, 2007: Measuring short-period wind waves in a tidally forced environment with a subsurface pressure gauge. Limnol. Oceanogr. Methods, 5 , 317327.

    • Search Google Scholar
    • Export Citation
  • Jones, N. L., R. J. Lowe, G. Pawlak, D. A. Fong, and S. G. Monismith, 2008: Plume dispersion on a fringing coral reef system. Limnol. Oceanogr., 53 , 22732286.

    • Search Google Scholar
    • Export Citation
  • Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74 , 69916994.

  • Kraines, S. B., T. Yanagi, M. Isobe, and H. Komiyama, 1998: Wind-wave driven circulation on the coral reef at Bora Bay, Miyako Island. Coral Reefs, 17 , 133143.

    • Search Google Scholar
    • Export Citation
  • Lippmann, T. C., A. H. Brookins, and E. B. Thornton, 1996: Wave energy transformation on natural profiles. Coastal Eng., 27 , 120.

  • Longuet-Higgins, M. S., 2005: On wave set-up in shoaling water with a rough sea bed. J. Fluid Mech., 527 , 217234.

  • Longuet-Higgins, M. S., and R. W. Stewart, 1962: Radiation stress and mass transport in gravity waves, with application to “surf beats.”. J. Fluid Mech., 13 , 481504.

    • Search Google Scholar
    • Export Citation
  • Lowe, R. J., J. L. Falter, M. D. Bandet, G. Pawlak, M. J. Atkinson, S. G. Monismith, and J. R. Koseff, 2005: Spectral wave dissipation over a barrier reef. J. Geophys. Res., 110 , C04001. doi:10.1029/2004JC002711.

    • Search Google Scholar
    • Export Citation
  • Lugo-Fernandez, A., H. H. Roberts, W. J. Wiseman, and B. L. Carter, 1998: Water level and currents of tidal and infragravity periods at Tague Reef, St. Croix (USVI). Coral Reefs, 17 , 343349.

    • Search Google Scholar
    • Export Citation
  • Lugo-Fernandez, A., H. H. Roberts, and W. J. Wiseman, 2004: Currents, water levels, and mass transport over a modern Caribbean coral reef: Tague Reef, St Croix, USVI. Cont. Shelf Res., 24 , 19892009.

    • Search Google Scholar
    • Export Citation
  • MacMahan, J. H., E. B. Thornton, and A. J. H. M. Reniers, 2006: Rip current review. Coastal Eng., 53 , 191208.

  • Mei, C. C., 1989: The Applied Dynamics of Ocean Surface Waves. World Scientific, 740 pp.

  • Monismith, S. G., 2007: Hydrodynamics of coral reefs. Annu. Rev. Fluid Mech., 39 , 3755.

  • Munk, W. H., and M. C. Sargent, 1954: Adjustment of Bikini Atoll to ocean waves. USGS Professional Paper 260-C, 275–280.

  • Nielsen, P., P. A. Guard, D. P. Callaghan, and T. E. Baldock, 2008: Observations of wave pump efficiency. Coastal Eng., 55 , 6972.

  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using TTIDE. Comput. Geosci., 28 , 929937.

    • Search Google Scholar
    • Export Citation
  • Putrevu, U., J. Oltman-Shay, and I. A. Svendsen, 1995: Effect of alongshore nonuniformities on longshore current predictions. J. Geophys. Res., 100 , 1611916130.

    • Search Google Scholar
    • Export Citation
  • Raubenheimer, B., R. T. Guza, and S. Elgar, 2001: Field observations of wave-driven setdown and setup. J. Geophys. Res., 106 , (C3). 46294638.

    • Search Google Scholar
    • Export Citation
  • Reidenbach, M. A., S. G. Monismith, J. R. Koseff, G. Yahel, and A. Genin, 2006: Boundary layer turbulence and flow structure over a fringing coral reef. Limnol. Oceanogr., 51 , 19561968.

    • Search Google Scholar
    • Export Citation
  • Reniers, A. J. H. M., and J. A. Battjes, 1997: A laboratory study of longshore currents over barred and non-barred beaches. Coastal Eng., 30 , 122.

    • Search Google Scholar
    • Export Citation
  • Roberts, H. H., S. P. Murray, and J. N. Suhayda, 1975: Physical processes in fringing reef system. J. Mar. Res., 33 , 233260.

  • Stockdon, H. F., R. A. Holman, P. A. Howd, and A. H. Sallenger, 2006: Empirical parameterization of setup, swash, and runup. Coastal Eng., 53 , 573588.

    • Search Google Scholar
    • Export Citation
  • Symonds, G., K. P. Black, and I. R. Young, 1995: Wave-driven flow over shallow reefs. J. Geophys. Res., 100 , (C2). 26392648.

  • Thornton, E. B., and R. T. Guza, 1983: Transformation of wave height distribution. J. Geophys. Res., 88 , (C10). 59255938.

  • Thornton, E. B., and C. S. Kim, 1993: Longshore-current and wave height modulation at tidal frequency inside the surf zone. J. Geophys. Res., 98 , 1650916519.

    • Search Google Scholar
    • Export Citation
  • Warner, J. C., W. R. Geyer, and J. A. Lerczak, 2005: Numerical modeling of an estuary: A comprehensive skill assessment. J. Geophys. Res., 110 , C05001. doi:10.1029/2004JC002691.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3042 1319 72
PDF Downloads 1260 319 33