Nonnormal Multidecadal Response of the Thermohaline Circulation Induced by Optimal Surface Salinity Perturbations

Florian Sévellec LOCEAN, Paris, France

Search for other papers by Florian Sévellec in
Current site
Google Scholar
PubMed
Close
,
Thierry Huck Laboratoire de Physique des Océans, UMR 6523 CNRS/IFREMER/UBO, Brest, France

Search for other papers by Thierry Huck in
Current site
Google Scholar
PubMed
Close
,
Mahdi Ben Jelloul Laboratoire de Physique des Océans, UMR 6523 CNRS/IFREMER/UBO, Brest, France

Search for other papers by Mahdi Ben Jelloul in
Current site
Google Scholar
PubMed
Close
, and
Jérôme Vialard IRD, LOCEAN, Paris, France

Search for other papers by Jérôme Vialard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Optimal perturbations of sea surface salinity are obtained for an idealized North Atlantic basin using a 3D planetary geostrophic model—optimality is defined with respect to the intensity of the meridional overturning circulation. Both optimal initial and stochastic perturbations are computed in two experiments corresponding to two different formulations of the surface boundary conditions: the first experiment uses mixed boundary conditions (i.e., restoring surface temperature and prescribed freshwater flux), whereas the second experiment uses flux boundary conditions for both temperature and salinity. The latter reveals greater responses to both initial and stochastic perturbations that are related to the existence of a weakly damped oscillatory eigenmode of the Jacobian matrix, the optimal perturbations being closely related to its biorthogonal. The optimal initial perturbation induces a transient modification of the circulation after 24 yr. The spectral response to the optimal stochastic perturbation reveals a strong peak at 35 yr, corresponding to the period of this oscillatory eigenmode. This study provides an upper bound of the meridional overturning response at multidecadal time scales to freshwater flux perturbation: for typical amplitudes of Great Salinity Anomalies, initial perturbations can alter the circulation by +2.25 Sv (1 Sv ≡ 106 m3 s−1; i.e., 12.5% of the mean circulation) at most; stochastic perturbations with amplitudes typical of the interannual variability of the freshwater flux in midlatitudes induce a circulation variability with a standard deviation of 1 Sv (i.e., 5.5% of the mean circulation) at most.

Corresponding author address: Florian Sévellec, Dept. of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109. Email: florian.sevellec@yale.edu

Abstract

Optimal perturbations of sea surface salinity are obtained for an idealized North Atlantic basin using a 3D planetary geostrophic model—optimality is defined with respect to the intensity of the meridional overturning circulation. Both optimal initial and stochastic perturbations are computed in two experiments corresponding to two different formulations of the surface boundary conditions: the first experiment uses mixed boundary conditions (i.e., restoring surface temperature and prescribed freshwater flux), whereas the second experiment uses flux boundary conditions for both temperature and salinity. The latter reveals greater responses to both initial and stochastic perturbations that are related to the existence of a weakly damped oscillatory eigenmode of the Jacobian matrix, the optimal perturbations being closely related to its biorthogonal. The optimal initial perturbation induces a transient modification of the circulation after 24 yr. The spectral response to the optimal stochastic perturbation reveals a strong peak at 35 yr, corresponding to the period of this oscillatory eigenmode. This study provides an upper bound of the meridional overturning response at multidecadal time scales to freshwater flux perturbation: for typical amplitudes of Great Salinity Anomalies, initial perturbations can alter the circulation by +2.25 Sv (1 Sv ≡ 106 m3 s−1; i.e., 12.5% of the mean circulation) at most; stochastic perturbations with amplitudes typical of the interannual variability of the freshwater flux in midlatitudes induce a circulation variability with a standard deviation of 1 Sv (i.e., 5.5% of the mean circulation) at most.

Corresponding author address: Florian Sévellec, Dept. of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT 06520-8109. Email: florian.sevellec@yale.edu

Save
  • Arzel, O., T. Huck, and A. Colin de Verdière, 2006: The different nature of the interdecadal variability of the thermohaline circulation under mixed and flux boundary conditions. J. Phys. Oceanogr., 36 , 17031718.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. S., S. Levitus, J. Antonov, and S-A. Malmberg, 1998: “Great salinity anomalies” in the North Atlantic. Prog. Oceanogr., 41 , 168.

    • Search Google Scholar
    • Export Citation
  • Bugnion, V., C. Hill, and P. H. Stone, 2006a: An adjoint analysis of the meridional overturning circulation in a hybrid coupled model. J. Climate, 19 , 37513767.

    • Search Google Scholar
    • Export Citation
  • Bugnion, V., C. Hill, and P. H. Stone, 2006b: An adjoint analysis of the meridional overturning circulation in an ocean model. J. Climate, 19 , 37323750.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and M. Ghil, 1995: Interdecadal variability of the thermohaline circulation and high-latitude surface flux. J. Phys. Oceanogr., 25 , 25472568.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and M. Ghil, 1996: Interdecadal variability in a hybrid coupled ocean–atmosphere model. J. Phys. Oceanogr., 26 , 15611578.

    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., 1988: Buoyancy driven planetary flows. J. Mar. Res., 46 , 215265.

  • Colin de Verdière, A., and T. Huck, 1999: Baroclinic instability: An oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr., 29 , 893910.

    • Search Google Scholar
    • Export Citation
  • Curry, R., and C. Mauritzen, 2005: Dilution of the northern North Atlantic Ocean in recent decades. Science, 308 , 17721774.

  • Curry, R., B. Dickson, and I. Yashayaev, 2003: A change in freshwater balance of the Atlantic Ocean over the past four decades. Nature, 426 , 826829.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16 , 661676.

    • Search Google Scholar
    • Export Citation
  • Dijkstra, H. A., and Coauthors, 2006: On the physics of the Atlantic Multidecadal Oscillation. Ocean Dyn., 56 , 3650.

  • Farrell, B. F., 1988: Optimal excitation of neutral Rossby waves. J. Atmos. Sci., 45 , 163172.

  • Farrell, B. F., and A. M. Moore, 1992: An adjoint method for obtaining the most rapidly growing perturbation to oceanic flows. J. Phys. Oceanogr., 22 , 338349.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1993: Stochastic forcing of perturbation variance in unbounded shear and deformation flows. J. Atmos. Sci., 50 , 200211.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 1996a: Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sci., 53 , 20252040.

  • Farrell, B. F., and P. J. Ioannou, 1996b: Generalized stability theory. Part II: Nonautonomous operators. J. Atmos. Sci., 53 , 20412053.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29 , 289305.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and S. Zhang, 1995: An interdecadal oscillation in an idealized ocean basin forced by constant heat flux. J. Climate, 8 , 8191.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Huck, T., and G. K. Vallis, 2001: Linear stability analysis of three-dimensional thermally-driven ocean circulation: Application to interdecadal oscillations. Tellus, 53A , 526545.

    • Search Google Scholar
    • Export Citation
  • Huck, T., A. Colin de Verdière, and A. J. Weaver, 1999a: Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes. J. Phys. Oceanogr., 29 , 865892.

    • Search Google Scholar
    • Export Citation
  • Huck, T., A. J. Weaver, and A. Colin de Verdière, 1999b: On the influence of the parameterization of lateral boundary layers on the thermohaline circulation in coarse-resolution ocean models. J. Mar. Res., 57 , 387426.

    • Search Google Scholar
    • Export Citation
  • Ioannou, P. J., 1995: Nonnormality increases variance. J. Atmos. Sci., 52 , 11551158.

  • Josey, S. A., and R. Marsh, 2005: Surface freshwater flux variability and recent freshening of the North Atlantic in the eastern subpolar gyre. J. Geophys. Res., 110 , C05008. doi:10.1029/2004JC002521.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32 , L20708. doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Lohmann, G., and J. Schneider, 1999: Dynamics and predictability of Stommel’s box model: A phase space perspective with implications for decadal climate variability. Tellus, 51A , 326336.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., R. S. Bradley, and M. K. Hughes, 1999: Northern Hemisphere temperature during the past millenium: Inferences, uncertainties, and limitations. Geophys. Res. Lett., 26 , 759762.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., 1996: Analysis of thermohaline feedbacks. Decadal Climate Variability: Dynamics and Predictability, D. L. T. Anderson and J. Willebrand, Eds., NATO ASI Series, Vol. 44, Springer, 333–378.

    • Search Google Scholar
    • Export Citation
  • Mignot, J., and C. Frankignoul, 2003: On the interannual variability of surface salinity in the Atlantic. Climate Dyn., 20 , 555565.

  • Mitchell, J. M., 1976: An overview of climatic variability and its causal mechanisms. Quat. Res., 6 , 481493.

  • Moore, A. M., and B. F. Farrell, 1993: Rapid perturbation growth on spatially and temporally varying oceanic flows determined using an adjoint method: Application to the Gulf Stream. J. Phys. Oceanogr., 23 , 16821702.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., C. L. Perez, and J. Zavala-Garay, 2002: A non-normal view of the wind-driven ocean circulation. J. Phys. Oceanogr., 32 , 26812705.

    • Search Google Scholar
    • Export Citation
  • Moore, A. M., J. Vialard, A. T. Weaver, D. L. T. Anderson, R. Kleeman, and J. R. Johnson, 2003: The role of air–sea interaction in controlling the optimal perturbations of low-frequency tropical coupled ocean–atmosphere modes. J. Climate, 16 , 951968.

    • Search Google Scholar
    • Export Citation
  • Mu, M., and Z. Zhang, 2006: Conditional nonlinear optimal perturbations of a two-dimensional quasigeostrophic model. J. Atmos. Sci., 63 , 15871604.

    • Search Google Scholar
    • Export Citation
  • Mu, M., L. Sun, and H. A. Dijkstra, 2004: The sensitivity and stability of the ocean’s thermohaline circulation to finite-amplitude perturbations. J. Phys. Oceanogr., 34 , 23052315.

    • Search Google Scholar
    • Export Citation
  • Sévellec, F., M. Ben Jelloul, and T. Huck, 2007: Optimal surface salinity perturbations influencing the thermohaline circulation. J. Phys. Oceanogr., 37 , 27892808.

    • Search Google Scholar
    • Export Citation
  • Sévellec, F., T. Huck, M. Ben Jelloul, N. Grima, J. Vialard, and A. Weaver, 2008: Optimal surface salinity perturbations of the meridional overturning and heat transport in a global ocean general circulation model. J. Phys. Oceanogr., 38 , 27392754.

    • Search Google Scholar
    • Export Citation
  • Sirkes, Z., and E. Tziperman, 2001: Identifying a damped oscillatory thermohaline mode in a general circulation model using an adjoint model. J. Phys. Oceanogr., 31 , 22972305.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with stable regimes flow. Tellus, 13 , 224230.

  • Stommel, H., and A. B. Arons, 1960: On the abyssal circulation of the world ocean. I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6 , 140154.

    • Search Google Scholar
    • Export Citation
  • Sun, L., M. Mu, D-J. Sun, and X-Y. Yin, 2005: Passive mechanism of decadal variation of thermohaline circulation. J. Geophys. Res., 110 , C07025. doi:10.1029/2005JC002897.

    • Search Google Scholar
    • Export Citation
  • te Raa, L. A., and H. A. Dijkstra, 2002: Instability of the thermohaline ocean circulation on interdecadal timescales. J. Phys. Oceanogr., 32 , 138160.

    • Search Google Scholar
    • Export Citation
  • te Raa, L. A., and H. A. Dijkstra, 2003: Sensitivity of North Atlantic multidecadal variability to freshwater flux forcing. J. Climate, 16 , 25862601.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and P. J. Ioannou, 2002: Transient growth and optimal excitation of thermohaline variability. J. Phys. Oceanogr., 32 , 34273435.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Zanna, and C. Penland, 2008: Nonnormal thermohaline circulation dynamics in a coupled ocean–atmosphere GCM. J. Phys. Oceanogr., 38 , 588604.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and R. A. Wood, 2002: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54 , 251267.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and E. S. Sarachik, 1991: The role of mixed boundary conditions in numerical models of ocean’s climate. J. Phys. Oceanogr., 21 , 14701493.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., E. S. Sarachik, and J. Marotzke, 1991: Freshwater flux forcing of decadal and interdecadal oceanic variability. Nature, 353 , 836838.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., J. Marotzke, P. F. Cummins, and E. S. Sarachik, 1993: Stability and variability of the thermohaline circulation. J. Phys. Oceanogr., 23 , 3960.

    • Search Google Scholar
    • Export Citation
  • Zanna, L., and E. Tziperman, 2005: Nonnormal amplification of the thermohaline circulation. J. Phys. Oceanogr., 35 , 15931605.

  • Zanna, L., and E. Tziperman, 2008: Optimal surface excitation of the thermohaline circulation. J. Phys. Oceanogr., 38 , 18201830.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 38 2
PDF Downloads 61 22 4