• Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams III, W. M. Drennan, K. K. Kahma, and S. A. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359 , 219220.

    • Search Google Scholar
    • Export Citation
  • Brainerd, K. E., and M. C. Gregg, 1993: Diurnal restratification and turbulence in the oceanic surface mixed layer. 1. Observations. J. Geophys. Res., 98 , 2264522656.

    • Search Google Scholar
    • Export Citation
  • Britter, R. E., J. C. R. Hunt, G. L. Marsh, and W. H. Snyder, 1983: The effects of stable stratification on turbulent diffusion and the decay of grid turbulence. J. Fluid Mech., 127 , 2744.

    • Search Google Scholar
    • Export Citation
  • Caldwell, D. R., R-C. Lien, J. N. Moum, and M. C. Gregg, 1997: Turbulence decay and restratification in the equatorial ocean surface layer following nighttime convection. J. Phys. Oceanogr., 27 , 11201132.

    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., J. C. Wyngaard, and J. C. Kaimal, 1979: Turbulence in the evolving stable boundary layer. J. Atmos. Sci., 36 , 10411052.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24 , 25462559.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73 , 401426.

  • D’Alessio, J. S. D., K. Abdella, and N. A. McFarlane, 1998: A new second-order turbulence closure scheme for modeling the ocean mixed layer. J. Phys. Oceanogr., 28 , 16241641.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., R. de Szoeke, and P. P. Niiler, 1981: Variability in the upper ocean during MILE. Part II: Modeling the mixed layer response. Deep-Sea Res., 28A , 14531475.

    • Search Google Scholar
    • Export Citation
  • Delnore, V. E., 1972: Diurnal variations of temperature and energy budget for the ocean mixed layer during BOMEX. J. Phys. Oceanogr., 2 , 239247.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., M. A. Donelan, E. A. Terray, and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26 , 808815.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and D. M. Farmer, 1999: Near-surface turbulence and thermal structure in a wind-driven sea. J. Phys. Oceanogr., 29 , 480499.

    • Search Google Scholar
    • Export Citation
  • Hopfinger, E. J., and P. F. Linden, 1982: Formation of thermoclines in zero-mean-shear turbulence subjected to a stabilizing buoyancy flux. J. Fluid Mech., 114 , 157173.

    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., D. D. Stretch, and R. E. Britter, 1988: Length scales in stably stratified turbulent flows and their use in turbulence models. Stably Stratified Flow and Dense Gas Dispersion, J. S. Puttock, Ed., Oxford University Press, 285–322.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and R. R. Long, 1980: Turbulent mixing with stabilizing surface buoyancy flux. Phys. Fluids, 23 , 21422143.

  • Kantha, L. H., and C. A. Clayson, 2000: Small-Scale Processes in Geophysical Fluid Flows. Academic Press, 888 pp.

  • Kantha, L. H., and C. A. Clayson, 2004: On the effect of surface gravity waves on mixing in the ocean mixed layer. Ocean Modell., 6 , 101124.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., 1988: Merits and demerits of different approaches to mixed layer modelling. Small-Scale Turbulence and Mixing in the Ocean, J. C. J. Nihoul and B. M. Jamart, Eds., Elsevier, 37–50.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, N. V., and A. V. Soloviev, 1990: Slippery near-surface layer of the ocean arising due to daytime solar heating. J. Phys. Oceanogr., 20 , 617628.

    • Search Google Scholar
    • Export Citation
  • Li, M., and C. Garrett, 1997: Mixed layer deepening due to Langmuir circulation. J. Phys. Oceanogr., 27 , 121132.

  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying large eddies in the upper ocean. Deep-Sea Res. I, 52 , 259278.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C. H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334 , 130.

  • Min, H. S., and Y. Noh, 2004: Influence of the surface heating on Langmuir circulation. J. Phys. Oceanogr., 34 , 26302641.

  • Niiler, P. P., and E. B. Kraus, 1977: One-dimensional models of the upper ocean. Modelling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon, 143–172.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., 1996: Dynamics of diurnal thermocline formation in the oceanic mixed layer. J. Phys. Oceanogr., 26 , 21832195.

  • Noh, Y., 2004: Sensitivity to wave breaking and the Prandtl number in the ocean mixed layer model and its dependence on latitude. Geophys. Res. Lett., 31 , L23305. doi:10.1029/2004GL021289.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., and R. R. Long, 1990: Turbulent mixing in a rotating, stratified fluid. Geophys. Astrophys. Fluid Dyn., 53 , 125143.

  • Noh, Y., and H. J. S. Fernando, 1991: A numerical study on the formation of a thermocline in shear-free turbulence. Phys. Fluids, 3A , 422426.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., and H. J. Kim, 1999: Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104 , 1562115634.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., H. S. Min, and S. Raasch, 2004: Large-eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34 , 720735.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., I. S. Kang, M. Herold, and S. Raasch, 2006: Large-eddy simulation of particle settling in the ocean mixed layer. Phys. Fluids, 18 , 085109. doi:10.1063/1.2337098.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., and J. J. Simpson, 1977: Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7 , 952956.

  • Polton, J. A., and S. E. Belcher, 2007: Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res., 112 , C09020. doi:10.1029/2007JC004205.

    • Search Google Scholar
    • Export Citation
  • Raasch, S., and M. Schröter, 2001: PALM—A large-eddy simulation model performing on massively parallel computers. Meteor. Z., 10 , 363372.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., and T. Gerz, 1995: Turbulent mixing in stably stratified shear flows. J. Appl. Meteor., 34 , 3348.

  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100 , 85018522.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., W. D. Smyth, J. N. Moum, and H. Wijesekera, 1999: Upper-ocean turbulence during a westerly wind burst: A comparison of large-eddy simulation results and microstructure measurements. J. Phys. Oceanogr., 29 , 528.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., and R. Lukas, 1997: Observation of large diurnal warming events in the near-surface layer of the western equatorial Pacific warm pool. Deep-Sea Res. I, 44 , 10551076.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., K. Saunders, W. Simmons, and J. Cooper, 1969: Observation of the diurnal thermocline. Deep-Sea Res., 16 , 269284.

  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593 , 405452.

    • Search Google Scholar
    • Export Citation
  • Woods, J. D., and W. Barkmann, 1986: The response of the upper ocean to solar heating. I. The mixed layer. Quart. J. Roy. Meteor. Soc., 112 , 127.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 463 257 17
PDF Downloads 344 197 16

Formation of a Diurnal Thermocline in the Ocean Mixed Layer Simulated by LES

View More View Less
  • 1 Department of Atmospheric Sciences/Global Environmental Laboratory, Yonsei University, Seoul, South Korea
  • | 2 Institute of Meteorology and Climatology, University of Hannover, Hannover, Germany
Restricted access

Abstract

The formation of a diurnal thermocline in the ocean mixed layer under a stabilizing buoyancy flux was simulated successfully by large-eddy simulation, reproducing various features consistent with observation. The analysis of the simulation result revealed that the formation of a diurnal thermocline passes through two different phases: the formation of a thermocline (formation stage) and increasing thickness of the thermocline thereafter (growth stage). Turbulent kinetic energy (TKE) flux dominates TKE production within the mixed layer, but turbulence maintained by shear production at the thermocline causes stratification below the mixed layer. In addition, once the thermocline is formed, both the gradient and flux Richardson numbers maintain constant values at the thermocline. It was also found that a diurnal thermocline cannot be formed in the absence of both wave breaking and Langmuir circulation. Furthermore, the effects of stratification on turbulence were investigated based on the time series of various physical variables of turbulence at the diurnal thermocline and within the mixed layer, and the mechanism for diurnal thermocline formation is discussed.

Corresponding author address: Yign Noh, Department of Atmospheric Sciences/Global Environmental Laboratory, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, South Korea. Email: noh@yonsei.ac.kr

Abstract

The formation of a diurnal thermocline in the ocean mixed layer under a stabilizing buoyancy flux was simulated successfully by large-eddy simulation, reproducing various features consistent with observation. The analysis of the simulation result revealed that the formation of a diurnal thermocline passes through two different phases: the formation of a thermocline (formation stage) and increasing thickness of the thermocline thereafter (growth stage). Turbulent kinetic energy (TKE) flux dominates TKE production within the mixed layer, but turbulence maintained by shear production at the thermocline causes stratification below the mixed layer. In addition, once the thermocline is formed, both the gradient and flux Richardson numbers maintain constant values at the thermocline. It was also found that a diurnal thermocline cannot be formed in the absence of both wave breaking and Langmuir circulation. Furthermore, the effects of stratification on turbulence were investigated based on the time series of various physical variables of turbulence at the diurnal thermocline and within the mixed layer, and the mechanism for diurnal thermocline formation is discussed.

Corresponding author address: Yign Noh, Department of Atmospheric Sciences/Global Environmental Laboratory, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, South Korea. Email: noh@yonsei.ac.kr

Save