• Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams III, W. M. Drennan, K. K. Kahma, and S. A. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359 , 219220.

    • Search Google Scholar
    • Export Citation
  • Anis, A., and J. N. Moum, 1995: Surface wave–turbulence interactions: Scaling ε(z) near the sea surface. J. Phys. Oceanogr., 25 , 20252044.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1982: The Theory of Homogeneous Turbulence. Cambridge University Press, 197 pp.

  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30 , 327341.

    • Search Google Scholar
    • Export Citation
  • Bryan, K. R., K. P. Black, and R. M. Gorman, 2003: Spectral estimates of dissipation rate within and near the surf zone. J. Phys. Oceanogr., 33 , 979993.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., 2001: Simulating the wave-enhanced layer under breaking surface waves with two-equation turbulence models. J. Phys. Oceanogr., 31 , 31333145.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., and H. Baumert, 1995: On the performance of a mixed-layer model based on the k ε turbulence closure. J. Geophys. Res., 100 , 85238540.

    • Search Google Scholar
    • Export Citation
  • Churchill, J. H., A. J. Plueddemann, and S. M. Faluotico, 2006: Extracting wind sea and swell from directional wave spectra derived from a bottom-mounted ADCP. Woods Hole Oceanographic Institution Tech. Rep. 200613, 34 pp.

    • Search Google Scholar
    • Export Citation
  • Corrsin, S., and A. L. Kistler, 1955: Free-stream boundaries of turbulent flows. National Advisory Committee on Aeronautics Rep. 1244, Washington, DC, 32 pp.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., 1996: Velocity profiles and surface roughness under breaking waves. J. Geophys. Res., 101 , (C1). 12651277.

  • Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24 , 25462559.

    • Search Google Scholar
    • Export Citation
  • Crawford, C. B., and D. M. Farmer, 1987: On the spatial distribution of ocean bubbles. J. Geophys. Res., 92 , (C8). 82318243.

  • D’Asaro, E., 2001: Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31 , 35303537.

  • Donelan, M. A., 1999: Wind-induced growth and attenuation of laboratory waves. Wind-over-wave Couplings. Perspectives and Prospects, S. G. Sajjadi, N. H. Thomas, and J. C. R. Hunt, Eds., Clarendon Press, 183–194.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., and W. J. Pierson, 1987: Radar scattering and equilibrium ranges in wind generated waves with applications to scatterometry. J. Geophys. Res., 92 , 49715029.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., A. V. Babanin, I. R. Young, and M. L. Banner, 2006: Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input. J. Phys. Oceanogr., 36 , 16721689.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., M. A. Donelan, E. A. Terray, and K. B. Katsaros, 1996: Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr., 26 , 808815.

    • Search Google Scholar
    • Export Citation
  • Feddersen, F., J. H. Trowbridge, and A. J. Williams III, 2007: Vertical structure of dissipation in the nearshore. J. Phys. Oceanogr., 37 , 17641777.

    • Search Google Scholar
    • Export Citation
  • Fung, J. C. H., J. C. R. Hunt, N. A. Malik, and R. J. Perkins, 1992: Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech., 236 , 281318.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and D. M. Farmer, 2004: Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 34 , 10671086.

    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., 2008: Observations of turbulent fluxes and turbulence dynamics in the ocean surface boundary layer. Ph.D. thesis, Woods Hole Oceanographic Institution–Massachusetts Institute of Technology, Woods Hole, MA, 119 pp.

  • Gerbi, G. P., J. H. Trowbridge, J. B. Edson, A. J. Plueddemann, E. A. Terray, and J. J. Fredericks, 2008: Measurements of momentum and heat transfer across the air–sea interface. J. Phys. Oceanogr., 38 , 10541072.

    • Search Google Scholar
    • Export Citation
  • Greenan, B. J., N. S. Oakey, and F. W. Dobson, 2001: Estimates of dissipation in the ocean mixed layer using a quasi-horizontal microstructure profiler. J. Phys. Oceanogr., 31 , 9921004.

    • Search Google Scholar
    • Export Citation
  • Hannoun, I. A., H. J. S. Fernando, and E. J. List, 1988: Turbulence structure near a sharp density interface. J. Fluid Mech., 180 , 189209.

    • Search Google Scholar
    • Export Citation
  • Hanson, J. L., and O. M. Phillips, 2001: Automated analysis of ocean surface directional wave spectra. J. Atmos. Oceanic Technol., 18 , 277293.

    • Search Google Scholar
    • Export Citation
  • Jones, N. L., and S. G. Monismith, 2008a: Modeling the influence of wave-enhanced turbulence in a shallow tide- and wind-driven water column. J. Geophys. Res., 113 , C03009. doi:10.1029/2007JC004246.

    • Search Google Scholar
    • Export Citation
  • Jones, N. L., and S. G. Monismith, 2008b: The influence of whitecapping waves on the vertical structure of turbulence in a shallow estuarine environment. J. Phys. Oceanogr., 38 , 15631580.

    • Search Google Scholar
    • Export Citation
  • Jones, W. P., and B. E. Launder, 1972: The prediction of laminerization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, 15 , 301314.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J., J. C. Wyngaard, Y. Izumi, and O. R. Cote, 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98 , 563589.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 2004: On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modell., 6 , 101124.

    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S. A., M. A. Donelan, J. L. Lumley, and E. A. Terray, 1983: Wave–turbulence interactions in the upper ocean. Part II: Statistical characteristics of wave and turbulent components of the random velocity field in the marine surface layer. J. Phys. Oceanogr., 13 , 19881999.

    • Search Google Scholar
    • Export Citation
  • Klebanoff, P. S., 1955: Characteristics of turbulence in a boundary layer with zero pressure gradient. National Advisory Committee on Aeronautics Rep. 1247, Washington, DC, 19 pp.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941a: Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 31 , 538540.

  • Kolmogorov, A. N., 1941b: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30 , 301305.

    • Search Google Scholar
    • Export Citation
  • Krogstad, H., R. Gordon, and M. Miller, 1988: High-resolution directional wave spectra from horizontally mounted acoustic Doppler current meters. J. Atmos. Oceanic Technol., 5 , 340352.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 1992: The surface boundary layer in coastal upwelling regions. J. Phys. Oceanogr., 22 , 15171539.

  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I, 52 , 259278.

    • Search Google Scholar
    • Export Citation
  • Lumley, J., and E. Terray, 1983: Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr., 13 , 20002007.

  • McPhee, M. G., and J. D. Smith, 1976: Measurements of the turbulent boundary layer under pack ice. J. Phys. Oceanogr., 6 , 696711.

  • McWilliams, J. C., P. P. Sullivan, and C-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334 , 130.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., F. Veron, and C. J. White, 2002: The velocity field under breaking waves: Coherent structures and turbulence. J. Fluid Mech., 454 , 203233.

    • Search Google Scholar
    • Export Citation
  • Nezu, I., and W. Rodi, 1986: Open-channel flow measurements with a laser Doppler anemometer. J. Hydraul. Eng., 112 , 335355.

  • Noh, Y., H. S. Min, and S. Raasch, 2004: Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34 , 720735.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1982: A relationship between wind stress and wave slope. J. Geophys. Res., 87 , 19611967.

  • Plueddemann, A. J., and R. A. Weller, 1999: Structure and evolution of the oceanic surface boundary layer during the Surface Waves Processes Program. J. Mar. Syst., 21 , 85102.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., J. A. Smith, D. M. Farmer, R. A. Weller, W. R. Crawford, R. Pinkel, S. Vagle, and A. Gnanadesikan, 1996: Structure and variability of Langmuir circulation during the Surface Waves Processes Program. J. Geophys. Res., 101 , (C2). 35253543.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., E. A. Terray, and R. Merrewether, 2001: Design and performance of a self-contained fan-beam ADCP. IEEE J. Oceanic Eng., 26 , 5459.

    • Search Google Scholar
    • Export Citation
  • Santala, M. J., 1991: Surface-referenced current meter measurements. Ph.D. thesis, Woods Hole Oceanographic Institution–Massachusetts Institute of Technology, Woods Hole, MA, 280 pp.

  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulation and convection in the surface mixed layer. J. Geophys. Res., 100 , (C5). 85018522.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1992: Observed growth of Langmuir circulation. J. Geophys. Res., 97 , 56515664.

  • Soloviev, A., and R. Lukas, 2003: Observation of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep-Sea Res. I, 50 , 371395.

    • Search Google Scholar
    • Export Citation
  • Stips, A., H. Burchard, K. Bolding, H. Prandke, A. Simon, and A. Wuest, 2005: Measurement and simulation of viscous dissipation in the wave affected surface layer. Deep-Sea Res. II, 52 , 11331155.

    • Search Google Scholar
    • Export Citation
  • Strong, B., B. Brumley, E. A. Terray, and G. W. Stone, 2000: The performance of ADCP-derived wave directional spectra and comparison with other independent measurements. Proc. Oceans 2000, Providence, RI, MTS/IEEE, 1195–1203.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593 , 405452.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164A , 476490.

  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. Massachusetts Institute of Technology Press, 300 pp.

  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams III, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26 , 792807.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., B. H. Brumley, and B. Strong, 1999a: Measuring waves and currents with and upward-looking ADCP. Proc. Sixth Working Conf. on Current Measurements, San Diego, CA, IEEE, 66–71.

    • Search Google Scholar
    • Export Citation
  • Terray, E. A., W. M. Drennan, and M. A. Donelan, 1999b: The vertical structure of shear and dissipation in the ocean surface layer. Proc. Symp. on the Wind-driven Air–Sea Interface—Electromagnetic and Acoustic Sensing, Wave Dynamics, and Turbulent Fluxes, Sydney, NSW, Australia, University of New South Wales, 239–245.

    • Search Google Scholar
    • Export Citation
  • Thompson, S. M., and J. S. Turner, 1975: Mixing across an interface due to turbulence generated by an oscillating grid. J. Fluid Mech., 67 , 349368.

    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and I. V. Fine, 2003: Estimating mixed layer depth from oceanic profile data. J. Atmos. Oceanic Technol., 20 , 319329.

    • Search Google Scholar
    • Export Citation
  • Trowbridge, J., and S. Elgar, 2001: Turbulence measurements in the surf zone. J. Phys. Oceanogr., 31 , 24032417.

  • Tseng, R-S., and E. D’Asaro, 2004: Measurements of turbulent vertical kinetic energy in the ocean mixed layer from Lagrangian floats. J. Phys. Oceanogr., 34 , 19841990.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2003: A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61 , 235265.

  • Umlauf, L., H. Burchard, and K. Hutter, 2003: Extending the k ω turbulence model towards oceanic applications. Ocean Modell., 5 , 195218.

    • Search Google Scholar
    • Export Citation
  • Veron, F., and W. K. Melville, 2001: Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech., 446 , 2565.

    • Search Google Scholar
    • Export Citation
  • Wilcox, D., 1988: Reassessment of the scale-determining equation for advanced turbulence models. AIAA J., 26 , 12991310.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 383 205 27
PDF Downloads 288 141 14

Observations of Turbulence in the Ocean Surface Boundary Layer: Energetics and Transport

View More View Less
  • 1 Woods Hole Oceanographic Institution–Massachusetts Institute of Technology, Woods Hole, Massachusetts
  • | 2 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Restricted access

Abstract

Observations of turbulent kinetic energy (TKE) dynamics in the ocean surface boundary layer are presented here and compared with results from previous observational, numerical, and analytic studies. As in previous studies, the dissipation rate of TKE is found to be higher in the wavy ocean surface boundary layer than it would be in a flow past a rigid boundary with similar stress and buoyancy forcing. Estimates of the terms in the turbulent kinetic energy equation indicate that, unlike in a flow past a rigid boundary, the dissipation rates cannot be balanced by local production terms, suggesting that the transport of TKE is important in the ocean surface boundary layer. A simple analytic model containing parameterizations of production, dissipation, and transport reproduces key features of the vertical profile of TKE, including enhancement near the surface. The effective turbulent diffusion coefficient for heat is larger than would be expected in a rigid-boundary boundary layer. This diffusion coefficient is predicted reasonably well by a model that contains the effects of shear production, buoyancy forcing, and transport of TKE (thought to be related to wave breaking). Neglect of buoyancy forcing or wave breaking in the parameterization results in poor predictions of turbulent diffusivity. Langmuir turbulence was detected concurrently with a fraction of the turbulence quantities reported here, but these times did not stand out as having significant differences from observations when Langmuir turbulence was not detected.

* Current affiliation: Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.

Corresponding author address: Gregory P. Gerbi, Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Rd., New Brunswick, NJ 08901-8521. Email: gerbi@marine.rutgers.edu

Abstract

Observations of turbulent kinetic energy (TKE) dynamics in the ocean surface boundary layer are presented here and compared with results from previous observational, numerical, and analytic studies. As in previous studies, the dissipation rate of TKE is found to be higher in the wavy ocean surface boundary layer than it would be in a flow past a rigid boundary with similar stress and buoyancy forcing. Estimates of the terms in the turbulent kinetic energy equation indicate that, unlike in a flow past a rigid boundary, the dissipation rates cannot be balanced by local production terms, suggesting that the transport of TKE is important in the ocean surface boundary layer. A simple analytic model containing parameterizations of production, dissipation, and transport reproduces key features of the vertical profile of TKE, including enhancement near the surface. The effective turbulent diffusion coefficient for heat is larger than would be expected in a rigid-boundary boundary layer. This diffusion coefficient is predicted reasonably well by a model that contains the effects of shear production, buoyancy forcing, and transport of TKE (thought to be related to wave breaking). Neglect of buoyancy forcing or wave breaking in the parameterization results in poor predictions of turbulent diffusivity. Langmuir turbulence was detected concurrently with a fraction of the turbulence quantities reported here, but these times did not stand out as having significant differences from observations when Langmuir turbulence was not detected.

* Current affiliation: Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.

Corresponding author address: Gregory P. Gerbi, Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Rd., New Brunswick, NJ 08901-8521. Email: gerbi@marine.rutgers.edu

Save