• Anderson, J. R., and J. R. Gyakum, 1989: A diagnostic study of Pacific Basin circulation regimes as determined from extratropical cyclone tracks. Mon. Wea. Rev., 117 , 26722686.

    • Search Google Scholar
    • Export Citation
  • Businger, S., 1987: The synoptic climatology of polar-low outbreaks over the Gulf of Alaska. Tellus, 39A , 307325.

  • Cokelet, E. D., M. L. Schall, and D. M. Dougherty, 1996: ADCP-referenced geostrophic circulation in the Bering Sea Basin. J. Phys. Oceanogr., 26 , 11131128.

    • Search Google Scholar
    • Export Citation
  • Curry, R. G., 2002: HydroBase 2: A database of hydrographic profiles and tools for climatological analysis. Woods Hole Oceanographic Institution Tech. Rep. 96-01, 81 pp.

    • Search Google Scholar
    • Export Citation
  • Davis, R., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6 , 249266.

    • Search Google Scholar
    • Export Citation
  • DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bunke, and H. Chadwick, 1996: Air–sea exchange of water vapor and sensible heat: The Humidity Exchange over the Sea (HEXOS) results. J. Geophys. Res., 101 , 1200112016.

    • Search Google Scholar
    • Export Citation
  • Favorite, F., A. J. Dodimead, and K. Nasu, 1976: Oceanography of the subarctic Pacific region, 1962–72. Bull. Int. North Pacific Fish. Comm., 33 , 1187.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: Fundamental mechanisms of the growth and decay of the Pacific–North American teleconnection pattern. Quart. J. Roy. Meteor. Soc., 108 , 775796.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., 1989: A Sverdrup model of the depth-integrated flow for the World Ocean allowing for island circulations. Geophys. Astrophys. Fluid Dyn., 45 , 89112.

    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., J. R. Anderson, R. H. Grumm, and E. L. Gruner, 1989: North Pacific cold-season surface cyclone activity: 1975–1983. Mon. Wea. Rev., 117 , 11411155.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. Mclntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111 , 877946.

    • Search Google Scholar
    • Export Citation
  • Kono, T., and Y. Kawasaki, 1997: Results of CTD and mooring observations southeast of Hokkaido. 1. Annual velocity and transport variations in the Oyashio. Bull. Hokkaido Natl. Fish. Res. Inst., 61 , 6581.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Blade, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15 , 22332256.

    • Search Google Scholar
    • Export Citation
  • Kutsuwada, K., 1982: New computation of the wind stress over the North Pacific Ocean. J. Oceanogr. Soc. Japan, 38 , 159171.

  • Lavender, K. L., 2001: The general circulation and open-ocean deep convection in the Labrador Sea: A study using subsurface floats. Ph.D. Thesis, University of California, San Diego, Scripps Institution of Oceanography, 131 pp.

  • Lavender, K. L., R. E. Davis, and W. B. Owens, 2000: Mid-depth recirculation observed in the interior Labrador and Irminger Seas by direct velocity measurements. Nature, 407 , 6669.

    • Search Google Scholar
    • Export Citation
  • Loescher, K. A., G. S. Young, B. A. Colle, and N. S. Winstead, 2006: Climatology of barrier jets along the Alaskan coast. Part I: Spatial and temporal distributions. Mon. Wea. Rev., 134 , 437453.

    • Search Google Scholar
    • Export Citation
  • Macdonald, A. M., T. Suga, and R. G. Curry, 2001: An isopycnally averaged North Pacific climatology. J. Atmos. Oceanic Technol., 18 , 394420.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and I. A. Renfrew, 2002: An assessment of the surface turbulent heat fluxes from the NCEP–NCAR reanalysis over the western boundary currents. J. Climate, 15 , 20202037.

    • Search Google Scholar
    • Export Citation
  • Musgrave, D. L., T. J. Weingartner, and T. C. Royer, 1992: Circulation and hydrography in the northwestern Gulf of Alaska. Deep-Sea Res., 39 , 14991519.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and R. T. Hiester, 1980: Development of a synoptic climatology for the northeast Gulf of Alaska. J. Appl. Meteor., 19 , 114.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and C. H. Pease, 1982: Cyclone climatology of the Bering Sea and its relation to sea ice extent. Mon. Wea. Rev., 110 , 513.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., M. C. Spillane, H. E. Hurlburt, and A. J. Wallcraft, 1994: A numerical study of the circulation of the Bering Sea Basin and exchange with the North Pacific Ocean. J. Phys. Oceanogr., 24 , 736758.

    • Search Google Scholar
    • Export Citation
  • Panteleev, G. G., P. Stabeno, V. A. Luchin, D. A. Nechaev, and M. Ikeda, 2006: Summer transport estimates of the Kamchatka Current derived as a variational inverse of hydrophysical and surface drifter data. Geophys. Res. Lett., 33 , L09609. doi:10.1029/2005GL024974.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., L. J. Pratt, M. A. Spall, and K. R. Helfrich, 1997: Circulation around islands and ridges. J. Mar. Res., 30 , 11991251.

  • Pickart, R. S., M. A. Spall, M. H. Ribergaard, G. W. K. Moore, and R. F. Milliff, 2003: Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424 , 152156.

    • Search Google Scholar
    • Export Citation
  • Plakhotnik, A. F., 1964: Hydrological description of the Gulf of Alaska. Part II. Soviet Fisheries Investigations in the Northeast Pacific, P. A. Moiseev, Ed., Russian Federal Research Institute of Fishery and Oceanography (VNIRO), 289 pp.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2002: Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 32 , 353375.

    • Search Google Scholar
    • Export Citation
  • Reed, R. K., R. D. Muench, and J. D. Schumacher, 1980: On baroclinic transport of the Alaskan Stream near Kodiak Island. Deep-Sea Res., 27 , 509523.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., G. W. K. Moore, P. S. Guest, and K. Bumke, 2002: A comparison of surface-layer heat flux and surface momentum flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32 , 383400.

    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., J. E. Overland, and N. A. Bond, 2005a: Spatial and temporal variability of the Aleutian climate. Fish. Oceanogr., 14 , 321.

    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., J. E. Overland, and N. A. Bond, 2005b: The Aleutian low and winter climatic conditions in the Bering Sea. Part I: Classification. J. Climate, 18 , 160177.

    • Search Google Scholar
    • Export Citation
  • Roden, G., 1970: Aspects of the mid-Pacific transition zone. J. Geophys. Res., 75 , 10971109.

  • Royer, T. C., 1981: Baroclinic transport in the Gulf of Alaska, Part I. Seasonal variations of the Alaska Current. J. Mar. Res., 39 , 239250.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic–dynamic climatology of the “bomb.”. Mon. Wea. Rev., 108 , 15891606.

  • Serreze, M. C., R. Carse, and R. Barry, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10 , 453464.

    • Search Google Scholar
    • Export Citation
  • Smirnov, V. V., and G. W. K. Moore, 2001: Short-term and seasonal variability of the atmospheric water vapor transport through the Mackenzie River basin. J. Hydrometeor., 2 , 441452.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93 , 1546715472.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., and R. S. Pickart, 2003: Wind-driven recirculations and exchange in the Labrador and Irminger Seas. J. Phys. Oceanogr., 33 , 18291845.

    • Search Google Scholar
    • Export Citation
  • Stabeno, P. J., and R. K. Reed, 1992: A major circulation anomaly in the western Bering Sea. Geophys. Res. Lett., 19 , 16711674.

  • Stabeno, P. J., J. D. Schumacher, and K. Ohtani, 1999: The physical oceanography of the Bering Sea. Dynamics of the Bering Sea: A Summary of Physical, Chemical, and Biological Characteristics, and a Synopsis of Research on the Bering Sea, T. R. Loughlin and K. Ohtani, Eds., University of Alaska Sea Grant AK-SG-99–03, North Pacific Marine Science Organization (PICES), 1–28.

    • Search Google Scholar
    • Export Citation
  • Stabeno, P. J., D. G. Kachel, N. B. Kachel, and M. E. Sullivan, 2005: Observations from moorings in the Aleutian Passes: Temperature, salinity and transport. Fish. Oceanogr., 14 , (Suppl. 1). 3954.

    • Search Google Scholar
    • Export Citation
  • Terada, K., and M. Hanzawa, 1984: Climate of the North Pacific Ocean. Climates of the Oceans, H. Van Loon, Ed., Vol. 15, World Survey of Climatology, Elsevier, 431–477.

    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., 1972: On the Alaskan Stream. J. Phys. Oceanogr., 2 , 363371.

  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9 , 303319.

  • Uehara, K., H. Miyake, and M. Okazaki, 1997: Characteristics of the flows in the Oyashio area off Cape Erimo, Hokkaido, Japan. J. Oceanogr., 53 , 93103.

    • Search Google Scholar
    • Export Citation
  • Uehara, K., S-I. Ito, H. Miyake, I. Yasuda, Y. Shimizu, and T. Watanabe, 2004: Absolute volume transports of the Oyashio referred to moored current meter data crossing the OICE. J. Oceanogr., 60 , 397409.

    • Search Google Scholar
    • Export Citation
  • Våge, K., R. S. Pickart, G. W. K. Moore, and M. H. Ribergaard, 2008: Winter mixed layer development in the central Irminger Sea: The effect of strong, intermittent wind events. J. Phys. Oceanogr., 38 , 541565.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 1993: The circulation of the depth-integrated flow around an island with application to the Indonesian Throughflow. J. Phys. Oceanogr., 23 , 14701484.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections of the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Warren, B. A., and W. B. Owens, 1988: Deep currents in the central subarctic Pacific Ocean. J. Phys. Oceanogr., 18 , 529551.

  • Wentz, F., D. Smith, C. Mears, and C. Gentemann, 2001: Advanced algorithms for QuikScat and SeaWinds/AMSR. Proc. Int. Geosci. Remote Sens. Symp. (IGARSS’01), Sydney, NSW, Australia, IEEE, 1079–1081.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and T. P. Barnett, 1972: A servomechanism in the ocean/atmosphere system of the midlatitude North Pacific Ocean. J. Phys. Oceanogr., 2 , 372381.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. G., and J. E. Overland, 1986: Meteorology. The Gulf of Alaska, Physical Environment and Biological Resources, D. W. Hood and S. T. Zimmerman, Eds., Alaska Office, Ocean Assessments Division, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 655 pp.

    • Search Google Scholar
    • Export Citation
  • Wise, J. L., A. L. Comisky, and R. Becker Jr., 1981: Storm surge climatology and forecasting in Alaska. Arctic Environmental Information and Data Center, University of Alaska, Anchorage, 53 pp.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. E. Walsh, J. Zhang, U. S. Bhatt, and M. Ikeda, 2004: Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J. Climate, 17 , 23002317.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 696 394 0
PDF Downloads 579 318 1

Seasonal Evolution of Aleutian Low Pressure Systems: Implications for the North Pacific Subpolar Circulation

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 University of Toronto, Toronto, Ontario, Canada
  • | 3 University of East Anglia, Norwich, United Kingdom
  • | 4 International Arctic Research Center, Fairbanks, Alaska
  • | 5 NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington
Restricted access

Abstract

The seasonal change in the development of Aleutian low pressure systems from early fall to early winter is analyzed using a combination of meteorological reanalysis fields, satellite sea surface temperature (SST) data, and satellite wind data. The time period of the study is September–December 2002, although results are shown to be representative of the long-term climatology. Characteristics of the storms were documented as they progressed across the North Pacific, including their path, central pressure, deepening rate, and speed of translation. Clear patterns emerged. Storms tended to deepen in two distinct geographical locations—the Gulf of Alaska in early fall and the western North Pacific in late fall. In the Gulf of Alaska, a quasi-permanent “notch” in the SST distribution is argued to be of significance. The signature of the notch is imprinted in the atmosphere, resulting in a region of enhanced cyclonic potential vorticity in the lower troposphere that is conducive for storm development. Later in the season, as winter approaches and the Sea of Okhotsk becomes partially ice covered and cold, the air emanating from the Asian continent leads to enhanced baroclinicity in the region south of Kamchatka. This corresponds to enhanced storm cyclogenesis in that region. Consequently, there is a seasonal westward migration of the dominant lobe of the Aleutian low. The impact of the wind stress curl pattern resulting from these two regions of storm development on the oceanic circulation is investigated using historical hydrography. It is argued that the seasonal bimodal input of cyclonic vorticity from the wind may be partly responsible for the two distinct North Pacific subarctic gyres.

Corresponding author address: Robert S. Pikart, Clark 3/MS 21, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: rpickart@whoi.edu

Abstract

The seasonal change in the development of Aleutian low pressure systems from early fall to early winter is analyzed using a combination of meteorological reanalysis fields, satellite sea surface temperature (SST) data, and satellite wind data. The time period of the study is September–December 2002, although results are shown to be representative of the long-term climatology. Characteristics of the storms were documented as they progressed across the North Pacific, including their path, central pressure, deepening rate, and speed of translation. Clear patterns emerged. Storms tended to deepen in two distinct geographical locations—the Gulf of Alaska in early fall and the western North Pacific in late fall. In the Gulf of Alaska, a quasi-permanent “notch” in the SST distribution is argued to be of significance. The signature of the notch is imprinted in the atmosphere, resulting in a region of enhanced cyclonic potential vorticity in the lower troposphere that is conducive for storm development. Later in the season, as winter approaches and the Sea of Okhotsk becomes partially ice covered and cold, the air emanating from the Asian continent leads to enhanced baroclinicity in the region south of Kamchatka. This corresponds to enhanced storm cyclogenesis in that region. Consequently, there is a seasonal westward migration of the dominant lobe of the Aleutian low. The impact of the wind stress curl pattern resulting from these two regions of storm development on the oceanic circulation is investigated using historical hydrography. It is argued that the seasonal bimodal input of cyclonic vorticity from the wind may be partly responsible for the two distinct North Pacific subarctic gyres.

Corresponding author address: Robert S. Pikart, Clark 3/MS 21, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Email: rpickart@whoi.edu

Save