• Beamish, R. J., A. J. Benson, R. M. Sweeting, and C. M. Neville, 2004: Regimes and the history of the major fisheries of Canada’s west coast. Prog. Oceanogr., 60 , 355385.

    • Search Google Scholar
    • Export Citation
  • Brainerd, K. E., and M. C. Gregg, 1995: Surface mixed and mixing layer depths. Deep-Sea Res. I, 42 , 15211543.

  • Crawford, W. R., P. J. Brickley, and A. C. Thomas, 2007: Mesoscale eddies dominate surface phytoplankton in the northern Gulf of Alaska. Prog. Oceanogr., 75 , 287303.

    • Search Google Scholar
    • Export Citation
  • Cummins, P. E., and G. S. E. Lagerloef, 2002: Low-frequency pycnocline depth variability at Ocean Weather Station P in the northeast Pacific. J. Phys. Oceanogr., 32 , 32073215.

    • Search Google Scholar
    • Export Citation
  • Curry, P., and C. Roy, 1989: Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can. J. Fish. Aquat. Sci., 46 , 670680.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., R. deSzoeke, and P. Niiler, 1981: Variability in the upper ocean during MILE. Part II: Modeling the mixed layer response. Deep-Sea Res., 28A , 14531475.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 2003: Understanding the persistence of the sea surface anomalies in midlatitudes. J. Climate, 16 , 5772.

    • Search Google Scholar
    • Export Citation
  • Dodimead, A. J., F. Favorite, and T. Hirano, 1963: Salmon of the North Pacific Ocean. Part II: Review of oceanography of the subarctic Pacific region. International North Pacific Fisheries Commission Bulletin 13, 195 pp.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and R. E. Thomson, 2001: Data Analysis Methods in Physical Oceanography. 2nd ed. Elsevier, 640 pp.

  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to SST anomalies and thermocline variability. Tellus, 29 , 289305.

    • Search Google Scholar
    • Export Citation
  • Freeland, H. J., and P. F. Cummins, 2005: Argo: A new tool for environmental monitoring and assessment of the world’s ocean, an example from the NE Pacific. Prog. Oceanogr., 64 , 3144.

    • Search Google Scholar
    • Export Citation
  • Freeland, H., K. Denman, C. S. Wong, F. Whitney, and R. Jacques, 1997: Evidence of change in the winter mixed layer in the northeast Pacific Ocean. Deep-Sea Res. I, 44 , 21172129.

    • Search Google Scholar
    • Export Citation
  • Gaspar, P., 1988: Modeling the seasonal cycle of the upper ocean. J. Phys. Oceanogr., 18 , 161180.

  • Gill, A. E., and J. S. Turner, 1976: A comparison of seasonal thermocline model with observation. Deep-Sea Res., 23 , 391401.

  • Jang, C. J., and Y. Noh, 2002: Simulation of the mixed layer in the western equatorial Pacific warm pool. Ocean Polar Res., 24 , 135146.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437470.

  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000a: Mixed layer depth variability and barrier layer formation over the North Pacific Ocean. J. Geophys. Res., 105 , 1678316801.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000b: An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105 , 1680316821.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247268.

    • Search Google Scholar
    • Export Citation
  • Ladd, C., and N. A. Bond, 2002: Evaluation of the NCEP/NCAR reanalysis in the NE Pacific and the Bering Sea. J. Geophys. Res., 107 , 3158. doi:10.1029/2001JC001157.

    • Search Google Scholar
    • Export Citation
  • Lagerloef, G. S. E., R. Lukas, R. A. Weller, and S. P. Anderson, 1998: Pacific warm pool temperature regulation during TOGA COARE: Upper ocean feedback. J. Climate, 11 , 22972309.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Ocean vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Mackas, D. L., R. Goldblatt, and A. J. Lewis, 1998: Interdecadal variation in developmental timing of Neocalanus plumchrus populations at Ocean Station P in the subarctic North Pacific. Can. J. Fish. Aquat. Sci., 55 , 18781893.

    • Search Google Scholar
    • Export Citation
  • Martin, P. J., 1985: Simulation of the mixed layer at OWS November and Papa with several models. J. Geophys. Res., 90 , 903916.

  • Meehl, G. A., 1984: A calculation of ocean heat storage and effective ocean surface layer depths for the Northern Hemisphere. J. Phys. Oceanogr., 14 , 17471761.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Minnett, P. J., R. O. Knuteson, F. A. Best, B. J. Osborne, J. A. Hanafin, and O. B. Brown, 2001: The marine-atmospheric emitted radiance interferometer: A high-accuracy, seagoing infrared spectroradiometer. J. Atmos. Oceanic Technol., 18 , 9941013.

    • Search Google Scholar
    • Export Citation
  • Monterey, G., and S. Levitus, 1997: Seasonal Variability of Mixed Layer Depth for the World Ocean. NOAA Atlas NESDIS 14, 100 pp.

  • Niiler, P. P., 1977: One-dimensional models of the upper ocean. Modelling and Prediction of the Upper Layers of the Ocean, E. B. Kraus, Ed., Pergamon Press, 143–172.

    • Search Google Scholar
    • Export Citation
  • Polovina, J. J., G. T. Mitchum, and G. T. Evans, 1995: Decadal and basin-scale variation in mixed layer depth and the impact on biological production in the Central and North Pacific, 1960–88. Deep Sea Res. I, 42 , 17011716.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91 , 84118427.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to the NOAA’s historical merged land–ocean temperature analysis (1880–2006). J. Climate, 21 , 22832296.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., D. Hebert, and J. N. Moum, 1996a: Local ocean response to a multiphase westerly windburst. Part 1: The dynamic response. J. Geophys. Res., 101 , 2249522512.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., D. Hebert, and J. N. Moum, 1996b: Local ocean response to a multiphase westerly windburst. Part 2: Thermal and freshwater responses. J. Geophys. Res., 101 , 2251322533.

    • Search Google Scholar
    • Export Citation
  • Swain, D., M. M. Ali, and R. A. Weller, 2006: Estimation of mixed-layer depth from surface parameters. J. Mar. Res., 64 , 745758.

  • Tabata, S., and J. L. Peart, 1985: Statistics of oceanographic data based on hydrographic/CTD casts made at Station P during August 1956 through June 1981. Can. Data Rep. Hydrogr. Ocean Sci., 31 , 133.

    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and S. Tabata, 1982: Baroclinic oscillations of tidal frequency at Ocean Weather Station P. Atmos.–Ocean, 20 , 242257.

    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and I. V. Fine, 2003: Estimating mixed layer depth from oceanic profile data. J. Atmos. Oceanic Technol., 20 , 319329.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., and E. B. Kraus, 1967: A one-dimensional model of the seasonal thermocline. I. A laboratory experiment and its interpretation. Tellus, 19 , 8897.

    • Search Google Scholar
    • Export Citation
  • Wijesekera, R. W., and M. C. Gregg, 1996: Surface layer response to weak winds, westerly bursts, and rain squalls in the western Pacific warm pool. J. Geophys. Res., 101 , 977997.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1982: Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87 , 97049706.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 251 133 0
PDF Downloads 195 115 0

A Diagnostic Model for Mixed Layer Depth Estimation with Application to Ocean Station P in the Northeast Pacific

View More View Less
  • 1 Institute of Ocean Sciences, Sidney, British Columbia, Canada
Restricted access

Abstract

This paper presents a simple diagnostic model for estimating mixed layer depth based solely on the one-dimensional heat balance equation, the surface heat flux, and the sea surface temperature. The surface fluxes drive heating or cooling of the upper layer whereas the surface temperature acts as a “thermostat” that regulates the vertical extent of the layer. Daily mixed layer depth estimates from the diagnostic model (and two standard bulk mixed layer models) are compared with depths obtained from oceanic profiles collected during the 1956–80 Canadian Weathership program at Station P and more recent (2001–07) profiles from the vicinity of this station from Argo drifters. Summer mixed layer depths from the diagnostic model agree more closely with observed depths and are less sensitive to heat flux errors than those from bulk models. For the Weathership monitoring period, the root-mean-square difference between modeled and observed monthly mean mixed layer depths is ∼6 m for the diagnostic model and ∼10 m for the bulk models. The diagnostic model is simpler to apply than bulk models and sidesteps the need for wind data and turbulence parameterization required by these models. Mixed layer depths obtained from the diagnostic model using NCEP–NCAR reanalysis data reveal that—contrary to reports for late winter—there has been no significant trend in the summer mixed layer depth in the central northeast Pacific over the past 52 yr.

Corresponding author address: Richard E. Thomson, Institute of Ocean Sciences, 9860 West Saanich Rd., Sidney, BC V8L 4B2, Canada. Email: richard.thomson@dfo-mpo.gc.ca

Abstract

This paper presents a simple diagnostic model for estimating mixed layer depth based solely on the one-dimensional heat balance equation, the surface heat flux, and the sea surface temperature. The surface fluxes drive heating or cooling of the upper layer whereas the surface temperature acts as a “thermostat” that regulates the vertical extent of the layer. Daily mixed layer depth estimates from the diagnostic model (and two standard bulk mixed layer models) are compared with depths obtained from oceanic profiles collected during the 1956–80 Canadian Weathership program at Station P and more recent (2001–07) profiles from the vicinity of this station from Argo drifters. Summer mixed layer depths from the diagnostic model agree more closely with observed depths and are less sensitive to heat flux errors than those from bulk models. For the Weathership monitoring period, the root-mean-square difference between modeled and observed monthly mean mixed layer depths is ∼6 m for the diagnostic model and ∼10 m for the bulk models. The diagnostic model is simpler to apply than bulk models and sidesteps the need for wind data and turbulence parameterization required by these models. Mixed layer depths obtained from the diagnostic model using NCEP–NCAR reanalysis data reveal that—contrary to reports for late winter—there has been no significant trend in the summer mixed layer depth in the central northeast Pacific over the past 52 yr.

Corresponding author address: Richard E. Thomson, Institute of Ocean Sciences, 9860 West Saanich Rd., Sidney, BC V8L 4B2, Canada. Email: richard.thomson@dfo-mpo.gc.ca

Save