• Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33 , 20312048.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M., P. Rhines, H-P. Huang, and M. McIntyre, 2007: The jet-stream conundrum. Science, 315 , 467468.

  • Berloff, P., 2005a: On rectification of randomly forced flows. J. Mar. Res., 63 , 497527.

  • Berloff, P., 2005b: On dynamically consistent eddy fluxes. Dyn. Atmos. Oceans, 38 , 123146.

  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009a: A mechanism for the formation of multiple zonal jets in the oceans. J. Fluid Mech., in press.

    • Search Google Scholar
    • Export Citation
  • Berloff, P., I. Kamenkovich, and J. Pedlosky, 2009b: A model of multiple zonal jets in the oceans: Dynamical and kinematical analysis. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Booth, J., and I. Kamenkovich, 2008: Isolating the role of transient mesoscale eddies in mixing of a passive tracer in an eddy resolving model. J. Geophys. Res., 113 , C05021. doi:10.1029/2007JC004510.

    • Search Google Scholar
    • Export Citation
  • Boyer, T., S. Levitus, H. Garcia, R. Locarnini, C. Stephens, and J. Antonov, 2005: Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25 degree grid. Int. J. Climatol., 25 , 931945.

    • Search Google Scholar
    • Export Citation
  • Danilov, S., and V. Gryanik, 2004: Barotropic beta-plane turbulence in a regime with strong zonal jets revisited. J. Atmos. Sci., 61 , 22832295.

    • Search Google Scholar
    • Export Citation
  • Danilov, S., and D. Gurarie, 2004: Scaling, spectra and zonal jets in beta-plane turbulence. Phys. Fluids, 16 , 25922603.

  • Dritschel, D., and M. E. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and resilience of eddy-transport barriers. J. Atmos. Sci., 65 , 855874.

    • Search Google Scholar
    • Export Citation
  • Galperin, B., H. Nakano, H. Huang, and S. Sukoriansky, 2004: The ubiquitous zonal jets in the atmospheres of giant planets and Earth’s oceans. Geophys. Res. Lett., 31 , L13303. doi:10.1029/2004GL019691.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283 , 20772079.

  • Griffies, S. M., and R. Hallberg, 2000: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128 , 29352946.

    • Search Google Scholar
    • Export Citation
  • Henning, C. C., and G. Vallis, 2004: The effects of mesoscale eddies on the main subtropical thermocline. J. Phys. Oceanogr., 34 , 24282443.

    • Search Google Scholar
    • Export Citation
  • Hogg, N., and B. Owens, 1999: Direct measurement of deep circulation within the Brazil basin. Deep-Sea Res., 46 , 335353.

  • Huang, H-P., and W. Robinson, 1998: Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci., 55 , 611632.

    • Search Google Scholar
    • Export Citation
  • Huang, H-P., A. Kaplan, E. Curchitser, and N. Maximenko, 2007: The degree of anisotropy for mid-ocean currents from satellite observations and an eddy-permitting model simulation. J. Geophys. Res., 112 , C09005. doi:10.1029/2007JC004105.

    • Search Google Scholar
    • Export Citation
  • Kramer, W., M. van Buren, H. Clercx, and G. van Heijst, 2006: β-plane turbulence in a basin with no-slip boundaries. Phys. Fluids, 18 , 026603. doi:10.1063/1.2173285.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J., and J. Pedlosky, 2004: The instability of Rossby basin modes and the oceanic eddy field. J. Phys. Oceanogr., 34 , 20272041.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364 , 701703.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean—Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1 , 3556.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N., B. Bang, and H. Sasaki, 2005: Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32 , L12607. doi:10.1029/2005GL022728.

    • Search Google Scholar
    • Export Citation
  • Nadiga, B., 2006: On zonal jets in oceans. Geophys. Res. Lett., 33 , L10601. doi:10.1029/2006GL025865.

  • Nakamura, M., and Y. Chao, 2000: On the eddy isopycnal thickness diffusivity of the Gent–McWilliams subgrid mixing parameterization. J. Climate, 13 , 502510.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., and T. Kagimoto, 2006: Potential vorticity and eddy potential enstrophy in the North Atlantic Ocean simulated by a global eddy-resolving model. Dyn. Atmos. Oceans., 41 , 2859.

    • Search Google Scholar
    • Export Citation
  • Nakano, H., and H. Hasumi, 2005: A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr., 35 , 474488.

    • Search Google Scholar
    • Export Citation
  • Nowlin, W., and J. Klinck, 1986: The physics of the Antarctic Circumpolar Current. Rev. Geophys., 24 , 469491.

  • Ollitrault, M., M. Lankhorst, D. Fratantoni, P. Richardson, and W. Zenk, 2006: Zonal intermediate currents in the equatorial Atlantic Ocean. Geophys. Res. Lett., 33 , L05605. doi:10.1029/2005GL025368.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth, and W. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42 , 641673.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1999: The MOM 3 manual. GFDL Tech. Rep. 4, 680 pp.

  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50 , 20732106.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Rhines, P., 1994: Jets. Chaos, 4 , 313339.

  • Rhines, P., 1975: Waves and turbulence on a beta-plane. J. Fluid Mech., 69 , 417443.

  • Richards, K., N. Maximenko, F. Bryan, and H. Sasaki, 2006: Zonal jets in the Pacific Ocean. Geophys. Res. Lett., 33 , L03605. doi:10.1029/2005GL024645.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., and S. Rintoul, 2007: Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 37 , 13941412.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and G. K. Vallis, 2001: The scales and equilibration of midocean eddies: Freely evolving flow. J. Phys. Oceanogr., 31 , 554571.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and G. K. Vallis, 2002: The scales and equilibration of midocean eddies: Forced-dissipative flow. J. Phys. Oceanogr., 32 , 16991720.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., M. E. Maltrud, F. O. Bryan, and M. W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr., 30 , 15321561.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33 , 530560.

    • Search Google Scholar
    • Export Citation
  • Thompson, A., and W. Young, 2007: Two-layer baroclinic eddy heat fluxes: Zonal flows and energy balance. J. Atmos. Sci., 64 , 32143231.

    • Search Google Scholar
    • Export Citation
  • Treguier, A., and R. L. Panetta, 1994: Multiple zonal jets in a quasigeostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 24 , 22632277.

    • Search Google Scholar
    • Export Citation
  • Treguier, A., N. Hogg, M. E. Maltrud, K. Speer, and V. Thierry, 2003: The origin of deep zonal flows in the Brazil basin. J. Phys. Oceanogr., 33 , 580599.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23 , 13461362.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 4 4 4

Role of Eddy Forcing in the Dynamics of Multiple Zonal Jets in a Model of the North Atlantic

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 2 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
  • | 3 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Restricted access

Abstract

Multiple zonal jets are observed in satellite data–based estimates of oceanic velocities, float measurements, and high-resolution numerical simulations of the ocean circulation. This study makes a step toward understanding the dynamics of these jets in the real ocean by analyzing the vertical structure and dynamical balances within multiple zonal jets simulated in an eddy-resolving primitive equation model of the North Atlantic. In particular, the authors focus on the role of eddy flux convergences (“eddy forcing”) in supporting the buoyancy and relative/potential vorticity (PV) anomalies associated with the jets. The results suggest a central role of baroclinic eddies in the barotropic and baroclinic dynamics of the jets, and significant differences in the effects of eddy forcing between the subtropical and subpolar gyres. Additionally, diabatic potential vorticity sources and sinks, associated with vertical diffusion, are shown to play an important role in supporting the potential vorticity anomalies. The resulting potential vorticity profile does not resemble a “PV staircase”—a distinct meridional structure observed in some idealized studies of geostrophic turbulence.

Corresponding author address: Igor Kamenkovich, Division of MPO, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: ikamenkovich@rsmas.miami.edu

Abstract

Multiple zonal jets are observed in satellite data–based estimates of oceanic velocities, float measurements, and high-resolution numerical simulations of the ocean circulation. This study makes a step toward understanding the dynamics of these jets in the real ocean by analyzing the vertical structure and dynamical balances within multiple zonal jets simulated in an eddy-resolving primitive equation model of the North Atlantic. In particular, the authors focus on the role of eddy flux convergences (“eddy forcing”) in supporting the buoyancy and relative/potential vorticity (PV) anomalies associated with the jets. The results suggest a central role of baroclinic eddies in the barotropic and baroclinic dynamics of the jets, and significant differences in the effects of eddy forcing between the subtropical and subpolar gyres. Additionally, diabatic potential vorticity sources and sinks, associated with vertical diffusion, are shown to play an important role in supporting the potential vorticity anomalies. The resulting potential vorticity profile does not resemble a “PV staircase”—a distinct meridional structure observed in some idealized studies of geostrophic turbulence.

Corresponding author address: Igor Kamenkovich, Division of MPO, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. Email: ikamenkovich@rsmas.miami.edu

Save