Three-Dimensional Evolution of Large-Amplitude Internal Waves in the Strait of Gibraltar

Vasiliy Vlasenko SEOES, University of Plymouth, Plymouth, United Kingdom

Search for other papers by Vasiliy Vlasenko in
Current site
Google Scholar
PubMed
Close
,
Jose C. Sanchez Garrido Grupo de Oceanografia Fisica, University of Malaga, Malaga, and Grupo de Puertos y Costas, University of Granada, Granada, Spain

Search for other papers by Jose C. Sanchez Garrido in
Current site
Google Scholar
PubMed
Close
,
Nataliya Stashchuk SEOES, University of Plymouth, Plymouth, United Kingdom

Search for other papers by Nataliya Stashchuk in
Current site
Google Scholar
PubMed
Close
,
Jesus Garcia Lafuente Grupo de Oceanografia Fisica, University of Malaga, Malaga, Spain

Search for other papers by Jesus Garcia Lafuente in
Current site
Google Scholar
PubMed
Close
, and
Miguel Losada Grupo de Puertos y Costas, University of Granada, Granada, Spain

Search for other papers by Miguel Losada in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The modeling of large-amplitude internal waves (LAIWs) propagating in the Strait of Gibraltar is carried out using a fully nonlinear nonhydrostatic numerical model. The focus of the modeling efforts was on three-dimensional peculiarities of LAIW evolution, namely, cross-strait variability, interaction with lateral boundaries (including wave breaking and water mixing), radiation of secondary waves from orographic features, and interaction of secondary scattered internal waves.

The along-channel propagation of packets of LAIWs reveals remarkable three-dimensional behavior. Due to the Coriolis force and multiple reflections from the lateral boundaries, the largest leading LAIW loses its energy much faster than that in the packet tail, which captures the scattered energy from the leading wave as it propagates and grows in amplitude. As a result of the energy transfer, the initially rank-ordered wave packet loses its regular structure to evolve into a non-rank-ordered wave train. In situ data collected in the eastern part of the Strait of Gibraltar confirm the idea that the non-rank-ordered structure is a common feature of internal wave packets emerging from the strait into the Alboran Sea.

Corresponding author address: Vasiliy Vlasenko, School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL8 4AA, United Kingdom. Email: vvlasenko@plymouth.ac.uk

Abstract

The modeling of large-amplitude internal waves (LAIWs) propagating in the Strait of Gibraltar is carried out using a fully nonlinear nonhydrostatic numerical model. The focus of the modeling efforts was on three-dimensional peculiarities of LAIW evolution, namely, cross-strait variability, interaction with lateral boundaries (including wave breaking and water mixing), radiation of secondary waves from orographic features, and interaction of secondary scattered internal waves.

The along-channel propagation of packets of LAIWs reveals remarkable three-dimensional behavior. Due to the Coriolis force and multiple reflections from the lateral boundaries, the largest leading LAIW loses its energy much faster than that in the packet tail, which captures the scattered energy from the leading wave as it propagates and grows in amplitude. As a result of the energy transfer, the initially rank-ordered wave packet loses its regular structure to evolve into a non-rank-ordered wave train. In situ data collected in the eastern part of the Strait of Gibraltar confirm the idea that the non-rank-ordered structure is a common feature of internal wave packets emerging from the strait into the Alboran Sea.

Corresponding author address: Vasiliy Vlasenko, School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL8 4AA, United Kingdom. Email: vvlasenko@plymouth.ac.uk

Save
  • Apel, J., 2003: A new analytical model for internal solitons in the ocean. J. Phys. Oceanogr., 33 , 2247–2269.

  • Armi, L., and D. Farmer, 1988: The flow of the Mediterranean water through the Strait of Gibraltar. Prog. Oceanogr., 21 , 1–105.

  • Brandt, P., W. Alpers, and J. O. Backhaus, 1996: Study of the generation and propagation of internal waves in the Strait of Gibraltar using numerical model and synthetic aperture radar images of the European ERS-1 satellite. J. Geophys. Res., 101 , 14237–14252.

    • Search Google Scholar
    • Export Citation
  • Bruno, M., J. Alonso, A. Cozar, J. Vidal, F. Echevarria, J. Ruiz, A. Ruiz-Canavate, and A. Gomez, 2002: The boiling water phenomena at Camarinal Sill, the Strait of Gibraltar. Deep-Sea Res. II, 49 , 4097–4113.

    • Search Google Scholar
    • Export Citation
  • Choi, W., and R. Camassa, 1999: Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech., 396 , 1–36.

  • Gilman, O. A., R. Grimshaw, and Yu A. Stepanyants, 1996: Dynamics of internal solitary waves in a rotating fluid. Dyn. Atmos. Oceans, 23 , 403–411.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., 1985: Evolution equation for weakly nonlinear, long internal waves in a rotating fluid. Stud. Appl. Math., 73 , 1–33.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., and W. Melville, 1989: On the derivation of the rotation-modified Kadomtsev–Petviashvili equation. Stud. Appl. Math., 80 , 183–202.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., and S. Tang, 1990: The rotation-modified Kadomtsev–Petviashvili equation: An analytical and numerical study. Stud. Appl. Math., 83 , 223–248.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., and K. R. Helfrich, 2008: Long-time solutions of the Ostrovsky equation. Stud. Appl. Math., 121 , 71–78.

  • Grimshaw, R., J-M. He, and L. Ostrovsky, 1998: Terminal damping of a solitary wave due to radiation in rotational systems. Stud. Appl. Math., 101 , 197–210.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., E. Pelinovsky, and A. Polukhina, 2002: Higher-order Korteweg–de Vries models for internal solitary waves in stratified shear flow with a free surface. Nonlin. Processes Geophys., 9 , 221–235.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., E. Pelinovsky, T. Talipova, and A. Kurkin, 2004: Simulation of the transformation of internal solitary waves due on oceanic shelves. J. Phys. Oceanogr., 34 , 2774–2791.

    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., 2007: Decay and return of internal solitary waves with rotation. Phys. Fluids, 19 , 026601. doi:10.1063/1.2472509.

  • Helfrich, K. R., and W. K. Melville, 2006: Long nonlinear internal waves. Annu. Rev. Fluid Mech., 38 , 395–425.

  • Izquierdo, A., L. Tejedor, D. Sein, J. Backhaus, P. Brandt, A. Rubino, and B. Kagan, 2001: Control variability and internal bore evolution in the Strait of Gibraltar: A 2-D two-layer model study. Estuarine Coastal Shelf Sci., 53 , 637–651.

    • Search Google Scholar
    • Export Citation
  • Katsis, C., and T. R. Akylas, 1987: Solitary internal waves in a rotating channel: A numerical study. Phys. Fluids, 30 , 297–301.

  • La Violette, P., T. Kinder, and D. Green III, 1986: Measurement of internal waves in the Strait of Gibraltar using a shore-based radar. Naval Ocean Research and Development Activity Rep. 118, 13 pp.

    • Search Google Scholar
    • Export Citation
  • Leonov, A. I., 1981: The effect of the earth’s rotation on the propagation of weakly nonlinear surface and internal long waves. Ann. N.Y. Acad. Sci., 373 , 150–159.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 , 5733–5752.

    • Search Google Scholar
    • Export Citation
  • Maxworthy, T., 1983: Experiments on solitary internal Kelvin waves. J. Fluid Mech., 129 , 365–383.

  • Ostrovsky, L. A., 1978: Nonlinear internal waves in a radiating ocean. Oceanology (Moscow), 18 , 119–125.

  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11 , 1443–1451.

    • Search Google Scholar
    • Export Citation
  • Renouard, D. P., G. Chabert d’Hieres, and X. Zhang, 1987: An experimental study of strongly nonlinear waves in a rotating system. J. Fluid Mech., 177 , 381–394.

    • Search Google Scholar
    • Export Citation
  • Sanchez Garrido, J. C., J. Garcia Lafuente, F. Criado Aldeanueva, A. Baquerizo, and G. Sanino, 2008: Time-spatial variability observed in velocity of propagation of the internal bore in the Strait of Gibraltar. J. Geophys. Res., 113 , C07034. doi:10.1029/2007JC004624.

    • Search Google Scholar
    • Export Citation
  • Sanz, J. L., J. Acosta, M. Esteras, P. Herranz, C. Palomo, and N. Sandoval, 1991: Geophysical survey of the Strait of Gibraltar (results of the Hercules program 1980–1983). Special Publications of the Spanish Institute of Oceanography, Vol. 7, 48 pp.

    • Search Google Scholar
    • Export Citation
  • Vazquez, A., N. Stashchuk, V. Vlasenko, M. Bruno, A. Izquierdo, and P. Gallacher, 2005: Evidence of multimodal structure of baroclinic tide in the Strait of Gibraltar. Geophys. Res. Lett., 33 , L17605. doi:10.1029/2006GL026806.

    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., and N. Stashchuk, 2006: Amplification and suppression of internal waves by tides over variable bottom topography. J. Phys. Oceanogr., 36 , 1959–1973.

    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., and N. Stashchuk, 2007: Three-dimensional shoaling of large-amplitude internal waves. J. Geophys. Res., 112 , C11018. doi:10.1029/2007JC004107.

    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., L. Ostrovsky, and K. Hutter, 2005a: Adiabatic behavior of strongly nonlinear internal solitary waves in slope-shelf areas. J. Geophys. Res., 110 , C04006. doi:10.1029/2004JC002705.

    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., N. Stashchuk, and K. Hutter, 2005b: Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge University Press, 375 pp.

    • Search Google Scholar
    • Export Citation
  • Watson, G., and I. Robinson, 1990: A study of internal wave propagation in the Strait of Gibraltar using shore-based marine radar images. J. Phys. Oceanogr., 20 , 374–395.

    • Search Google Scholar
    • Export Citation
  • Wesson, J., and M. Gregg, 1988: Turbulent dissipation in the Strait of Gibraltar and associated mixing. Small-Scale Turbulence and Mixing in the Ocean, J. Nihoul and B. Jamart, Eds., Elsevier Oceanography Series, Vol. 46, Elsevier, 201–212.

    • Search Google Scholar
    • Export Citation
  • Whitham, G., 1974: Linear and Nonlinear Waves. Wiley and Sons, 636 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 588 245 30
PDF Downloads 369 129 18