Measurements of Ocean Surface Turbulence and Wave–Turbulence Interactions

Fabrice Veron College of Marine and Earth Studies, University of Delaware, Newark, Delaware

Search for other papers by Fabrice Veron in
Current site
Google Scholar
PubMed
Close
,
W. Kendall Melville Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by W. Kendall Melville in
Current site
Google Scholar
PubMed
Close
, and
Luc Lenain Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Luc Lenain in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The uppermost layers of the ocean, along with the lower atmospheric boundary layer, play a crucial role in the air–sea fluxes of momentum, heat, and mass, thereby providing important boundary conditions for both the atmosphere and the ocean that control the evolution of weather and climate. In particular, the fluxes of heat and gas rely on exchange processes through the molecular layers, which are usually located within the viscous layer, which is in turn modulated by the waves and the turbulence at the free surface. The understanding of the multiple interactions between molecular layers, viscous layers, waves, and turbulence is, therefore, paramount for an adequate parameterization of these fluxes. In this paper, the authors present evidence of a clear coupling between the surface waves and the surface turbulence. When averaged over time scales longer than the wave period, this coupling yields a spatial relationship between surface temperature, divergence, and vorticity fields that is consistent with spatial patterns of Langmuir turbulence. The resulting surface velocity field is hyperbolic, suggesting that significant stretching takes place in the surface layers. On time scales for which the surface wave field is resolved, the authors show that the surface turbulence is modulated by the waves in a manner that is qualitatively consistent with the rapid distortion theory.

Corresponding author address: Fabrice Veron, College of Marine and Earth Studies, University of Delaware, 112C Robinson Hall, Newark, DE 19716. Email: fveron@udel.edu

Abstract

The uppermost layers of the ocean, along with the lower atmospheric boundary layer, play a crucial role in the air–sea fluxes of momentum, heat, and mass, thereby providing important boundary conditions for both the atmosphere and the ocean that control the evolution of weather and climate. In particular, the fluxes of heat and gas rely on exchange processes through the molecular layers, which are usually located within the viscous layer, which is in turn modulated by the waves and the turbulence at the free surface. The understanding of the multiple interactions between molecular layers, viscous layers, waves, and turbulence is, therefore, paramount for an adequate parameterization of these fluxes. In this paper, the authors present evidence of a clear coupling between the surface waves and the surface turbulence. When averaged over time scales longer than the wave period, this coupling yields a spatial relationship between surface temperature, divergence, and vorticity fields that is consistent with spatial patterns of Langmuir turbulence. The resulting surface velocity field is hyperbolic, suggesting that significant stretching takes place in the surface layers. On time scales for which the surface wave field is resolved, the authors show that the surface turbulence is modulated by the waves in a manner that is qualitatively consistent with the rapid distortion theory.

Corresponding author address: Fabrice Veron, College of Marine and Earth Studies, University of Delaware, 112C Robinson Hall, Newark, DE 19716. Email: fveron@udel.edu

Save
  • Agrawal, Y., E. Terray, M. Donelan, P. Hwang, A. J. Williams III, W. M. Drennan, K. K. Kahma, and S. A. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359 , 219220.

    • Search Google Scholar
    • Export Citation
  • Anis, A., and J. N. Moum, 1995: Surface wave–turbulence interactions: Scaling ϵ(z) near the sea surface. J. Phys. Oceanogr., 25 , 20252045.

    • Search Google Scholar
    • Export Citation
  • Belcher, S., and J. Hunt, 1998: Turbulent flow over hills and waves. Annu. Rev. Fluid Mech., 30 , 507538.

  • Belcher, S., J. A. Harris, and R. L. Street, 1994: Linear dynamics of wind waves in coupled turbulent air–water flow. Part 1. Theory. J. Fluid Mech., 271 , 119151.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28 , 181189.

    • Search Google Scholar
    • Export Citation
  • Capon, J., 1969: High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE, 57 , 14081418.

  • Cheung, T. K., and R. L. Street, 1988a: The turbulent layer in the water at an air–water interface. J. Fluid Mech., 194 , 133151.

  • Cheung, T. K., and R. L. Street, 1988b: Wave-following measurements in the water beneath an air-water interface. J. Geophys. Res., 93 , (C11). 1408914097.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., 1977: The generation of Langmuir circulations by an instability mechanism. J. Fluid Mech., 81 , 209223.

  • Edson, J. B., and C. W. Fairall, 1998: Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J. Atmos. Sci., 55 , 23112328.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., C. J. Zappa, J. A. Ware, W. R. McGillis, and J. E. Hare, 2004: Scalar flux profile relationships over the open ocean. J. Geophys. Res., 109 , C08S09. doi:10.1029/2003JC001960.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for tropical ocean–global atmosphere coupled-ocean–atmosphere response experiment. J. Geophys. Res., 101 , 37473764.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Garbe, C. S., U. Schimpf, and B. A. Jähne, 2004: Surface renewal model to analyze infrared image sequences of the ocean surface for the study of air-sea heat and gas exchange. J. Geophys. Res., 109 , C08S15. doi:10.1029/2003JC001802.

    • Search Google Scholar
    • Export Citation
  • Hasse, L., 1990: On the mechanism of gas exchange at the air–sea interface. Tellus, 42B , 250253.

  • Hristov, T., C. A. Friehe, and S. Miller, 1998: Wave-coherent fields in the air flow over ocean waves: Identification of cooperative behavior buried in turbulence. Phys. Rev. Lett., 81 , 52455248.

    • Search Google Scholar
    • Export Citation
  • Isobe, M., K. Kondo, and K. Horikawa, 1984: Extension of MLM for estimating directional wave spectrum. Proc. Symp. on Description and Modelling of Directional Seas, Copenhagen, Denmark, Danish Hydraulic Institute and Marine Metadata Interoperability, A-6-1–A-6-15.

    • Search Google Scholar
    • Export Citation
  • Jähne, B., and H. Haußecker, 1998: Air–water gas exchange. Annu. Rev. Fluid Mech., 30 , 443468.

  • Jähne, B., K. O. Munnich, R. Bosinger, A. Dutzi, W. Huber, and W. Libner, 1987: On the parameters influencing air-water gas exchange. J. Geophys. Res., 92 , 19371949.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1989: Wind-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr., 19 , 745754.

  • Janssen, P. A. E. M., 1999: On the effect of ocean waves on the kinetic energy balance and consequences for the inertial dissipation technique. J. Phys. Oceanogr., 29 , 530534.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., M. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. Janssen, 1994: Dynamics and Modeling of Ocean Waves. Cambridge University Press, 531 pp.

    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1977: On the evolution of the system of wind drift currents and Langmuir circulations in the ocean. Part 1. Theory and average current. J. Fluid Mech., 79 , 715743.

    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15 , 391427.

  • Lumley, J. L., and E. A. Terray, 1983: Kinematics of turbulence convected by a random wave field. J. Phys. Oceanogr., 13 , 20002007.

  • Lygre, A., and H. E. Krogstad, 1986: Maximum entropy estimation of the directional distribution in ocean wave spectra. J. Phys. Oceanogr., 16 , 20522060.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334 , 130.

  • Melville, W. K., 1994: Energy dissipation by breaking waves. J. Phys. Oceanogr., 24 , 20412049.

  • Melville, W. K., 1996: The role of surface-wave breaking in air–sea interaction. Annu. Rev. Fluid Mech., 28 , 279321.

  • Melville, W. K., R. Shear, and F. Veron, 1998: Laboratory measurements of the generation and evolution of Langmuir circulations. J. Fluid Mech., 364 , 3158.

    • Search Google Scholar
    • Export Citation
  • Miller Jr., A. W., and R. L. Street, 1978: On the existence of temperature waves at a wavy air–water interface. J. Geophys. Res., 83 , 13531365.

    • Search Google Scholar
    • Export Citation
  • Pawka, S. S., 1983: Island shadow in wave directional spectra. J. Geophys. Res., 88 , 25792591.

  • Raffel, M., C. E. Willert, and J. Kompenhans, 1998: Particle Image Velocimetry: A Practical Guide. Springer-Verlag, 253 pp.

  • Rapp, R. J., and W. K. Melville, 1990: Laboratory measurements of deep-water breaking waves. Philos. Trans. Roy. Soc. London, A331 , 735800.

    • Search Google Scholar
    • Export Citation
  • Schimpf, U., C. Garbe, and B. Jähne, 2004: Investigation of transport processes across the sea surface microlayer by infrared imagery. J. Geophys. Res., 109 , C08S13. doi:10.1029/2003JC001803.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. J., and C. A. Paulson, 1980: Small-scale sea surface temperature structure. J. Phys. Oceanogr., 10 , 399410.

  • Sullivan, P. P., and J. C. McWilliams, 2002: Turbulent flow over water waves in the presence of stratification. Phys. Fluids, 14 , 11821195.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations. J. Fluid Mech., 507 , 143174.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593 , 405452.

    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., and S. E. Belcher, 2002: On the distortion of turbulence by a progressive surface wave. J. Fluid Mech., 458 , 229267.

    • Search Google Scholar
    • Export Citation
  • Terray, E., A. Williams, M. Donelan, W. Drennan, Y. Agrawal, K. Kahma, S. Kitaigorodskii, and P. Hwang, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26 , 792807.

    • Search Google Scholar
    • Export Citation
  • Thais, L., and J. Magnaudet, 1995: A triple decomposition of the fluctuating motion below laboratory wind water waves. J. Geophys Res., 100 , (C1). 741755.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1993: Energy loss by breaking waves. J. Phys. Oceanogr., 23 , 24982502.

  • Thorpe, S. A., 2004: Langmuir circulation. Annu. Rev. Fluid Mech., 36 , 5579.

  • Townsend, A. A., 1976: The Structure of Turbulent Shear Flow. 2nd ed. Cambridge University Press, 429 pp.

  • Turney, D. E., W. C. Smith, and S. A. Banerjee, 2005: A measure of near-surface fluid motions that predicts air–water gas exchange in a wide range of conditions. Geophys. Res. Lett., 32 , L04607. doi:10.1029/2004GL021671.

    • Search Google Scholar
    • Export Citation
  • Uz, B. M., M. A. Donelan, T. Hara, and E. J. Bock, 2002: Laboratory studies of wind stress over surface waves. Bound.-Layer Meteor., 102 , 301331.

    • Search Google Scholar
    • Export Citation
  • Veron, F., and W. K. Melville, 1999a: Pulse-to-pulse coherent Doppler measurements of waves and turbulence. J. Atmos. Oceanic Technol., 16 , 15801597.

    • Search Google Scholar
    • Export Citation
  • Veron, F., and W. K. Melville, 1999b: Laboratory studies of mixing and Langmuir circulations. Proc. Symp. on the Wind-Driven Air–Sea Interface, Sydney, NSW, Australia, Australian Defense Force Academy, 265–272.

    • Search Google Scholar
    • Export Citation
  • Veron, F., and W. K. Melville, 2001: Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech., 446 , 2565.

    • Search Google Scholar
    • Export Citation
  • Veron, F., W. K. Melville, and L. Lenain, 2008a: Wave coherent air–sea heat flux. J. Phys. Oceanogr., 38 , 788802.

  • Veron, F., W. K. Melville, and L. Lenain, 2008b: Infrared techniques for measuring ocean surface processes. J. Atmos. Oceanic Technol., 25 , 307326.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapor transfer. Quart. J. Roy. Meteor. Soc., 106 , 85100.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1994: On the measurement of directional wave spectra. Appl. Ocean Res., 16 , 283294.

  • Zappa, C. J., W. E. Asher, and A. T. Jessup, 2001: Microscale wave breaking and air-water gas transfer. J. Geophys. Res., 106 , (C5). 93859391.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 799 225 27
PDF Downloads 663 157 11